首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Z Honda  M Nakamura  I Miki  M Minami  T Watanabe  Y Seyama  H Okado  H Toh  K Ito  T Miyamoto 《Nature》1991,349(6307):342-346
Platelet-activating factor (PAF), a unique phospholipid mediator, possesses potent proinflammatory, smooth-muscle contractile and hypotensive activities, and appears to be crucial in the pathogenesis of bronchial asthma and in the lethality of endotoxin and anaphylactic shock. Despite this, little is known of the molecular properties of the PAF receptor and related signal transduction systems. Although several lines of evidence suggest that activation of the PAF receptor stimulates phospholipase C and subsequent inositol trisphosphate formation through G protein(s), the PAF receptor and calcium channel are reported to show a close relation. As a first approach to cloning lipid autacoid receptors, we have isolated complementary DNA for the PAF receptors. Our strategy involved gene expression in Xenopus laevis oocytes and electrophysiological detection of PAF-induced responses. Sequence analysis indicates that the receptor belongs to the superfamily of G protein-coupled receptors.  相似文献   

2.
K J Tracey  Y Fong  D G Hesse  K R Manogue  A T Lee  G C Kuo  S F Lowry  A Cerami 《Nature》1987,330(6149):662-664
Bacterial infection of the mammalian bloodstream can lead to overwhelming sepsis, a potentially fatal syndrome of irreversible cardiovascular collapse (shock) and critical organ failure. Cachectin, also known as tumour necrosis factor, is a macrophage-derived peptide hormone released in response to bacterial lipopolysaccharide, and it has been implicated as a principal mediator of endotoxic shock, although its function in bacterial sepsis is not known. Anaesthetized baboons were passively immunized against endogenous cachectin and subsequently infused with an LD100 dose of live Escherichia coli. Control animals (not immunized against cachectin) developed hypotension followed by lethal renal and pulmonary failure. Neutralizing monoclonal anti-cachectin antibody fragments (F(ab')2) administered to baboons only one hour before bacterial challenge protected against shock, but did not prevent critical organ failure. Complete protection against shock, vital organ dysfunction, persistent stress hormone release and death was conferred by administration of antibodies 2 h before bacterial infusion. These results indicate that cachectin is a mediator of fatal bacteraemic shock, and suggest that antibodies against cachectin offer a potential therapy of life-threatening infection.  相似文献   

3.
Release of chromatin protein HMGB1 by necrotic cells triggers inflammation   总被引:129,自引:0,他引:129  
Scaffidi P  Misteli T  Bianchi ME 《Nature》2002,418(6894):191-195
High mobility group 1 (HMGB1) protein is both a nuclear factor and a secreted protein. In the cell nucleus it acts as an architectural chromatin-binding factor that bends DNA and promotes protein assembly on specific DNA targets. Outside the cell, it binds with high affinity to RAGE (the receptor for advanced glycation end products) and is a potent mediator of inflammation. HMGB1 is secreted by activated monocytes and macrophages, and is passively released by necrotic or damaged cells. Here we report that Hmgb1(-/-) necrotic cells have a greatly reduced ability to promote inflammation, which proves that the release of HMGB1 can signal the demise of a cell to its neighbours. Apoptotic cells do not release HMGB1 even after undergoing secondary necrosis and partial autolysis, and thus fail to promote inflammation even if not cleared promptly by phagocytic cells. In apoptotic cells, HMGB1 is bound firmly to chromatin because of generalized underacetylation of histone and is released in the extracellular medium (promoting inflammation) if chromatin deacetylation is prevented. Thus, cells undergoing apoptosis are programmed to withhold the signal that is broadcast by cells that have been damaged or killed by trauma.  相似文献   

4.
T J Rink  A Sanchez  T J Hallam 《Nature》1983,305(5932):317-319
An increase in cytoplasmic free calcium, [Ca2+]i, is thought to be the trigger for secretory exocytosis in many cells. In blood platelets, large rises in [Ca2+]i can cause secretion and calcium has been regarded as the final common activator not only for secretion but also for shape-change and aggregation. We have shown that while thrombin and platelet-activating factor (PAF) normally elevate [Ca2+]i, they can also stimulate shape-change and secretion even when the [Ca2+]i rise is suppressed. The present results strongly implicate diacylglycerol, produced by stimulus-dependent breakdown of phosphoinositide, in this calcium-independent activation. Exogenous diacylglycerol activates a protein kinase (C-kinase) in platelets as do PAF, thrombin and collagen. 12-O-tetradecanoyl phorbol-13-acetate (TPA) also activates C-kinase and is a potent stimulus for secretion and aggregation. It is shown here that the exogenous diacylglycerol 1-oleoyl-2-acetyl-glycerol (OAG) and TPA evoke similar secretion and aggregation without elevating [Ca2+]i above the basal level of 0.1 microM. The pattern of secretion resembles that produced by collagen and thrombin when [Ca2+]i remains at basal levels. Modest increases in [Ca2+]i, insufficient to stimulate secretion, markedly accelerate the responses to TPA and OAG.  相似文献   

5.
Interleukin-1 receptor antagonist reduces mortality from endotoxin shock   总被引:76,自引:0,他引:76  
About five out of 1,000 patients admitted to hospital develop bacterial sepsis leading to shock, the mortality rate for which is high despite antibiotic therapy. The infection results in hypotension and poor tissue perfusion, and eventually leads to the failure of several organ systems. Bacterial endotoxin is thought to be the direct cause of shock in Gram-negative sepsis, because it can cause shock in animals, and antibodies against endotoxin prevent Gram-negative shock in animals and in humans. But, the symptoms of septic shock are the result of the actions of host cytokines induced by the endotoxin. The cytokine interleukin-1 has been implicated as an important mediator of septic shock because it can induce tachycardia and hypotension and act synergistically with tumour necrosis factor to cause tissue damage and death. We now report that a specific interleukin-1 receptor antagonist reduces the lethality of endotoxin-induced shock in rabbits, indicating that interleukin-1 does indeed play an important part in endotoxin shock.  相似文献   

6.
Endothelin-1 (ET-1) is a 21-amino-acid peptide, derived from vascular endothelial cells, with potent vasoconstrictor activity. ET-1 has been implicated in diverse physiological or pathological processes, including the vascular changes associated with sepsis. However, the factors that regulate ET-1-associated toxicity during bacterial infections, or in other settings, are not fully understood. Both the pathology associated with certain allergic and autoimmune disorders, and optimal host defence against bacterial and parasitic infections are mediated by mast cells. In vitro, mast cells can produce ET-1 (ref. 11), undergo ET-1-dependent and endothelin-A receptor (ET(A))-dependent activation, and release proteases that degrade ET-1 (ref. 14). Although the potential relationships between mast cells and the ET-1 system thus may be complex, the importance of interactions between ET-1 and mast cells in vivo is obscure. Here we show that ET(A)-dependent mast-cell activation can diminish both ET-1 levels and ET-1-induced pathology in vivo, and also can contribute to optimal survival during acute bacterial peritonitis. These findings identify a new biological function for mast cells: promotion of homeostasis by limiting the toxicity associated with an endogenous mediator.  相似文献   

7.
银杏内酯的药理作用   总被引:3,自引:0,他引:3  
银杏内酯为银杏叶提取物及其制剂中的主要药效成分,具有抗血小板活化因子(简称PAF活性,文中对近几十年关于银杏内酯的药理学研究进行了综述.药理学研究表明,银杏内酯(特别银杏内酯B)是血小板活化因子强有力的拮抗剂,具有抗血小板聚集、杭血栓、防治动脉粥样硬化、抗炎症和抗过敏等作用.  相似文献   

8.
F S Kraly 《Nature》1983,302(5903):65-66
Drinking occurs around meal time in most mammals. Food-related drinking accounts for approximately 70% of daily fluid intake for rats, but little is known of the mechanisms by which eating elicits drinking. That eating and vagal stimulation elicit the release of histamine from gastric mucosa, together with the fact that drinking elicited by eating or exogenous histamine depends on an intact abdominal vagus, suggests a role for endogenous histamine as a component of food-related drinking in the rat. I report here that the combined antagonism of peripheral H1 and H2 receptors for histamine (1) attenuates drinking elicited by normal food-contingent stimulation of the gastrointestinal tract and (2) abolishes drinking elicited by pregastric food-contingent stimulation during sham feeding in the rat.  相似文献   

9.
Choi MH  Lee IK  Kim GW  Kim BU  Han YH  Yu DY  Park HS  Kim KY  Lee JS  Choi C  Bae YS  Lee BI  Rhee SG  Kang SW 《Nature》2005,435(7040):347-353
Platelet-derived growth factor (PDGF) is a potent mitogenic and migratory factor that regulates the tyrosine phosphorylation of a variety of signalling proteins via intracellular production of H2O2 (refs 1, 2-3). Mammalian 2-Cys peroxiredoxin type II (Prx II; gene symbol Prdx2) is a cellular peroxidase that eliminates endogenous H2O2 produced in response to growth factors such as PDGF and epidermal growth factor; however, its involvement in growth factor signalling is largely unknown. Here we show that Prx II is a negative regulator of PDGF signalling. Prx II deficiency results in increased production of H2O2, enhanced activation of PDGF receptor (PDGFR) and phospholipase Cgamma1, and subsequently increased cell proliferation and migration in response to PDGF. These responses are suppressed by expression of wild-type Prx II, but not an inactive mutant. Notably, Prx II is recruited to PDGFR upon PDGF stimulation, and suppresses protein tyrosine phosphatase inactivation. Prx II also leads to the suppression of PDGFR activation in primary culture and a murine restenosis model, including PDGF-dependent neointimal thickening of vascular smooth muscle cells. These results demonstrate a localized role for endogenous H2O2 in PDGF signalling, and indicate a biological function of Prx II in cardiovascular disease.  相似文献   

10.
目要 :探讨血小板在速发型变态反应中的作用及相互关系。方法 :选择 172例健康对照组及速发型变态反应性疾病 138例 (其中哮喘 5 1例 ,变应性鼻炎 5 0例 ,荨麻疹 37例 ) ,取左手无名指血 ,按李氏等 [1 ] 方法进行血小板形态学分类。结果 :疾病组与健康组比较 ,成熟型血小板显著降低 ,衰老型及变性型血小板显著升高。结论 :血小板能增强由 Ig E介导的嗜碱粒细胞介质的释放作用 ;速发型变态反应也可激活血小板发生释放作用  相似文献   

11.
W Siffert  J W Akkerman 《Nature》1987,325(6103):456-458
Stimulated platelets take up sodium ions and release hydrogen ions due to activation of Na+/H+ exchange resulting in cytoplasmic alkalinization. Suppression of Na+/H+ exchange either by removal of extracellular Na+ or by application of amiloride inhibits shape change, secretion of granule contents and aggregation. The data we present here indicate that inhibition of this transport by ethylisopropyl-amiloride or by lowering extracellular sodium reduces or even completely suppresses the rise in cytoplasmic free Ca2+ concentration that is essential for platelet aggregation in response to thrombin. We also demonstrate that cytoplasmic alkalinization produced by exposure to the ionophore monensin sensitizes the human platelet response to stimulation by thrombin resulting in enhanced Ca2+ mobilization and aggregability. We conclude that an increase in intracellular pH evoked by activation of Na+/H+ counter transport is an important signal in stimulus-response coupling and forms an essential step in the cascade of events required to increase cytoplasmic free Ca2+ in platelets.  相似文献   

12.
急性上消化道大出血是老人急症之一。3年来我院收治45例,年龄60~91岁,平均年龄703岁。37例经纤维胃镜检查:消化性溃疡24例;急性胃粘膜病变、糜烂性胃炎10例;胃癌2例;肝硬化并食道静脉破裂1例。大部分病人由于出血量多,入院时多处于休克状态,病情危重,需及时抢救。在综合疗效法基础上,联合应用奥美拉唑及胃腔降温,疗效满意,成功率达956%,24h内大部分患者止血。其作用机理:奥美拉唑是质子泵抑制剂,抑制H+K+-ATP酶活性,对胃酸分泌有强而持久的抑制作用,使血小板能很好地凝集形成凝血块,减少H+回渗致胃粘膜产生糜烂和溃疡,有利于止血。胃腔降温也可抑制胃酶分泌,抑制胃蛋白酶活性及血块溶解;冰冻盐水加入去甲肾上腺素、凝血酶等局部应用,可起到协同止血作用  相似文献   

13.
Cloning and expression of cDNA for a human thromboxane A2 receptor.   总被引:26,自引:0,他引:26  
Thromboxane A2 is a very unstable arachidonate metabolite, yet a potent stimulator of platelet aggregation and a constrictor of vascular and respiratory smooth muscles. It has been implicated as a mediator in diseases such as myocardial infarction, stroke and bronchial asthma. Using a stable analogue of this compound we recently purified the human platelet thromboxane A2 receptor to apparent homogeneity. Using an oligonucleotide probe corresponding to its partial amino-acid sequence, we have obtained a complementary DNA clone encoding this receptor from human placenta and a partial clone from cultured human megakaryocytic leukaemia cells. The placenta cDNA encodes a protein of 343 amino acids with seven putative transmembrane domains. The protein expressed in COS-7 cells binds drugs with affinities identical to those of the platelet receptor, and that in Xenopus oocytes opens Ca2(+)-activated Cl- channel on agonist stimulation. Northern blot analysis and nucleotide sequences of the two clones suggest that an identical species of the thromboxane A2 receptor is present in platelets and vascular tissues. This first report on the molecular structure of an eicosanoid receptor will promote the molecular pharmacology and pathophysiology of these bioactive compounds.  相似文献   

14.
J M Arrang  M Garbarg  J C Schwartz 《Nature》1983,302(5911):832-837
Although histaminergic neurones have not yet been histochemically visualized, there is little doubt that histamine (HA) has a neurotransmitter role in the invertebrate and mammalian central nervous system. For example, a combination of biochemical, electrophysiological and lesion studies in rats have shown that histamine is synthesized in and released from a discrete set of neurones ascending through the lateral hypothalamic area and widely projecting in the telencephalon. Histamine acts on target cells in mammalian brain via stimulation of two classes of receptor (H1 and H2) previously characterized in peripheral organs and probably uses Ca2+ and cyclic AMP, respectively, as second messengers. It is well established that several neurotransmitters affect neuronal activity in the central nervous system through stimulation not only of postsynaptic receptors, but also of receptors located presynaptically which often display distinct pharmacological specificity and by which they may control their own release. Such 'autoreceptors' have been demonstrated (or postulated) in the case of noradrenaline, dopamine, serotonin, acetylcholine and gamma-aminobutyric acid (GABA) neurones but have never been demonstrated for histamine. We show here that histamine inhibits its own release from depolarized slices of rat cerebral cortex, an action apparently mediated by a class of receptor (H3) pharmacologically distinct from those previously characterized, that is, the H1 and H2 receptors.  相似文献   

15.
Studies both in vivo and in vitro have shown that substituted benzimidazoles inhibit the stimulation of acid secretion produced by dibutyryl cyclic AMP and histamine. Furthermore, the results differ from those produced by H2 antagonists and anticholinergic agents in that the inhibition is not competitive, and the site of action is intracellular and peripheral to that of dibutyryl cyclic AMP. To investigate the biochemical mechanism of action of substituted benzimidazoles, one such compound, H 149/94 (2-([2-(3-methyl)pyridyl-methyl]-sulphinyl)-5-methoxycarbonyl-6-methylbenzimidazol), has been tested either directly on an (H+ + K+)ATPase isolated from pig and human gastric mucosa or on the function of this enzyme in gastric glands isolated from rabbit and human gastric mucosa. (H+ + K+)ATPase, which has only been found at the secretory surface of the parietal cell, catalyses a one-to-one exchange of protons and potassium ions. It is possibly the proton pump within the gastric mucosa, and may thus be the terminal or one of the terminal steps of the acid secretory process. We show here that H 149/94 inhibits (H+ + K+)ATPase, which may explain its inhibitory action on acid secretion in vitro and in vivo. Because of the unique distribution and properties of the (H+ + K+)ATPase, the inhibitory action of H 149/94 on this enzyme may be a highly selective clinical means of suppressing the acid secretory process.  相似文献   

16.
Release of endogenous excitatory amino acids from turtle photoreceptors   总被引:10,自引:0,他引:10  
D R Copenhagen  C E Jahr 《Nature》1989,341(6242):536-539
Responses to light are transmitted from photoreceptors to second-order retinal neurons by chemical synapses that may use an excitatory amino acid (EAA) as the neurotransmitter. This hypothesis is based primarily on the pharmacological actions of EAA agonists and antagonists on the membrane potentials and light responses of second-order neurons. But the release of endogenous EAAs, which is a critical criterion for the identification of EAAs as transmitters, has not been demonstrated. Here we report the use of outside-out membrane patches excised from rat hippocampal neurons to detect the release of EAAs from synaptic terminals of isolated turtle photoreceptors. Electrical stimulation of or application of lanthanum chloride to photoreceptors induced an increase in the frequency of opening of 50-pS channels in the patches. These channels were identified as the class of glutamate-activated channels that are also gated by aspartate and NMDA (N-methyl-D-aspartate). In several photoreceptor-patch pairs, spontaneous channel activity was observed near the synaptic terminals. These results provide strong evidence to support the hypothesis that both rods and cones of the turtle use an EAA as their neurotransmitter.  相似文献   

17.
Pertussis toxin reverses adenosine inhibition of neuronal glutamate release   总被引:14,自引:0,他引:14  
A C Dolphin  S A Prestwich 《Nature》1985,316(6024):148-150
Adenosine and its analogues are potent inhibitors of synaptic activity in the central and peripheral nervous system. In the central nervous system (CNS), this appears to arise primarily by inhibition of presynaptic release of transmitters, including glutamate, which is possibly the major excitatory transmitter in the brain. In addition, postsynaptic effects of adenosine have been reported which would also serve to reduce neurotransmission. The mechanism by which adenosine inhibits CNS neurotransmission is unknown, although it appears to exert its effect via an A1 receptor which in some systems is negatively coupled to adenylate cyclase. In an attempt to elucidate the mechanism of inhibition, we have examined the effect of pertussis toxin (PTX) on the ability of the stable adenosine analogue (-)phenylisopropyladenosine (PIA) to inhibit glutamate release from cerebellar neurones maintained in primary culture. PTX, by ADP-ribosylating the nucleotide-binding protein Ni, prevents coupling of inhibitory receptors such as the A1 receptor to adenylate cyclase. As reported here, we found that PTX, as well as preventing inhibition of adenylate cyclase by PIA, also converts the PIA-induced inhibition of glutamate release to a stimulation. Our results suggest strongly that purinergic inhibitory modulation of transmitter release occurs by inhibition of adenylate cyclase.  相似文献   

18.
Oleylethanolamide (OEA) is a natural analogue of the endogenous cannabinoid anandamide. Like anandamide, OEA is produced in cells in a stimulus-dependent manner and is rapidly eliminated by enzymatic hydrolysis, suggesting a function in cellular signalling. However, OEA does not activate cannabinoid receptors and its biological functions are still unknown. Here we show that, in rats, food deprivation markedly reduces OEA biosynthesis in the small intestine. Administration of OEA causes a potent and persistent decrease in food intake and gain in body mass. This anorexic effect is behaviourally selective and is associated with the discrete activation of brain regions (the paraventricular hypothalamic nucleus and the nucleus of the solitary tract) involved in the control of satiety. OEA does not affect food intake when injected into the brain ventricles, and its anorexic actions are prevented when peripheral sensory fibres are removed by treatment with capsaicin. These results indicate that OEA is a lipid mediator involved in the peripheral regulation of feeding.  相似文献   

19.
Dopamine orchestrates motor behaviour and reward-driven learning. Perturbations of dopamine signalling have been implicated in several neurological and psychiatric disorders, and in drug addiction. The actions of dopamine are mediated in part by the regulation of gene expression in the striatum, through mechanisms that are not fully understood. Here we show that drugs of abuse, as well as food reinforcement learning, promote the nuclear accumulation of 32-kDa dopamine-regulated and cyclic-AMP-regulated phosphoprotein (DARPP-32). This accumulation is mediated through a signalling cascade involving dopamine D1 receptors, cAMP-dependent activation of protein phosphatase-2A, dephosphorylation of DARPP-32 at Ser 97 and inhibition of its nuclear export. The nuclear accumulation of DARPP-32, a potent inhibitor of protein phosphatase-1, increases the phosphorylation of histone H3, an important component of nucleosomal response. Mutation of Ser 97 profoundly alters behavioural effects of drugs of abuse and decreases motivation for food, underlining the functional importance of this signalling cascade.  相似文献   

20.
Understanding the actions of the neurotransmitter dopamine in the brain is important in view of its roles in neuropsychiatric illnesses. Dopamine D1 receptors, which stimulate both adenylyl cyclase and phospholipase C, and D2 receptors, which inhibit them, can nevertheless act synergistically to produce many electrophysiological and behavioral responses. Because this functional synergism can occur at the level of single neurons, another, as yet unidentified, signalling pathway activated by dopamine has been hypothesized. We report here that in Chinese hamster ovary (CHO) cells transfected with the D2 receptor complementary DNA, D2 agonists potently enhanced arachidonic acid release, provided that such release has been initiated by stimulating constitutive purinergic receptors or by increasing intracellular Ca2+. In CHO cells expressed D1 receptors, D1 agonists exert no such effect. When D1 and D2 receptors are coexpressed, however, activation of both subtypes results in a marked synergistic potentiation of arachidonic acid release. The numerous actions of arachidonic acid and its metabolites in neuronal signal transduction suggest that facilitation of its release may be implicated in dopaminergic responses, such as feedback inhibition mediated by D2 autoreceptors, and may constitute a molecular basis for D1/D2 receptor synergism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号