首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Contrary to the traditional view that microtubules pull chromosomes polewards during the anaphase stage of meiotic and mitotic cell divisions, new evidence suggests that the chromosome movements are driven by a motor located at the kinetochore. The process of chromosome segregation involves proper arrangement of kinetochores for spindle attachment, followed by spindle attachment and chromosome movement. Mechanisms in Drosophila for chromosome segregation in meiosis differ in males and females, implying the action of different gene products in the two sexes. A product encoded at the claret locus in Drosophila is required for normal chromosome segregation in meiosis in females and in early mitotic divisions of the embryo. Here we show that the predicted amino-acid sequence of this product is related to the heavy chain of kinesin. The conserved region corresponds to the kinesin motor domain and includes the ATP-binding site and a region that can bind microtubules. A second region contains a leucine repeat motif which may mediate protein-subunit interactions necessary for attachment of chromosomes to the spindle. The mutant phenotype of chromosome nondisjunction and loss, and its similarity to the kinesin ATP-binding domain, suggest that the product encoded at claret not only stabilizes chromosome attachments to the spindle, but may also be a motor that drives chromosome segregation in female meiosis.  相似文献   

2.
Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene   总被引:45,自引:0,他引:45  
I Hagan  M Yanagida 《Nature》1990,347(6293):563-566
The structure equivalent to higher eukaryotic centrosomes in fission yeast, the nuclear membrane-bound spindle pole body, is inactive during interphase. On transition from G2 to M phase of the cell cycle, the spindle pole body duplicates; the daughter pole bodies seed microtubules which interdigitate to form a short spindle that elongates to span the nucleus at metaphase. We have identified two loci which, when mutated, block spindle formation. The predicted product of one of these genes, cut7+, contains an amino-terminal domain similar to the kinesin heavy chain head domain, indicating that the cut7+ product could be a spindle motor. The cut7+ gene resembles the Aspergillus nidulans putative spindle motor gene bimC, both in terms of its organization with a homologous amino-terminal head and no obvious heptad repeats and in the morphology of the mutant phenotype. But we find no similarity between the carboxy termini of these genes, suggested that either the cut7+ gene represents a new class of kinesin genes and that fission yeast may in addition contain a bimC homologue, or that the carboxy termini of these mitotic kinesins are not evolutionarily conserved and that the cut7+ gene belongs to a subgroup of bimC-related kinesins.  相似文献   

3.
Mishima M  Pavicic V  Grüneberg U  Nigg EA  Glotzer M 《Nature》2004,430(7002):908-913
The bipolar mitotic spindle is responsible for segregating sister chromatids at anaphase. Microtubule motor proteins generate spindle bipolarity and enable the spindle to perform mechanical work. A major change in spindle architecture occurs at anaphase onset when central spindle assembly begins. This structure regulates the initiation of cytokinesis and is essential for its completion. Central spindle assembly requires the centralspindlin complex composed of the Caenorhabditis elegans ZEN-4 (mammalian orthologue MKLP1) kinesin-like protein and the Rho family GAP CYK-4 (MgcRacGAP). Here we describe a regulatory mechanism that controls the timing of central spindle assembly. The mitotic kinase Cdk1/cyclin B phosphorylates the motor domain of ZEN-4 on a conserved site within a basic amino-terminal extension characteristic of the MKLP1 subfamily. Phosphorylation by Cdk1 diminishes the motor activity of ZEN-4 by reducing its affinity for microtubules. Preventing Cdk1 phosphorylation of ZEN-4/MKLP1 causes enhanced metaphase spindle localization and defects in chromosome segregation. Thus, phosphoregulation of the motor domain of MKLP1 kinesin ensures that central spindle assembly occurs at the appropriate time in the cell cycle and maintains genomic stability.  相似文献   

4.
During cell division, sister chromosomes segregate from each other on a microtubule-based structure called the mitotic spindle. Proteins bind to the centromere, a region of chromosomal DNA, to form the kinetochore, which mediates chromosome attachment to the mitotic spindle microtubules. In the budding yeast Saccharomyces cerevisiae, genetic analysis has shown that the 28-basepair (bp) CDEIII region of the 125-bp centromere DNA sequence (CEN sequence) is the main region controlling chromosome segregation in vivo. Therefore it is likely that proteins binding to the CDEIII region link the centromeres to the microtubules during mitosis. A complex of proteins (CBF3) that binds specifically to the CDEIII DNA sequence has been isolated by affinity chromatography. Here we describe kinetochore function in vitro. The CBF3 complex can link DNA to microtubules, and the complex contains a minus-end-directed microtubule-based motor. We suggest that microtubule-based motors form the fundamental link between microtubules and chromosomes at mitosis.  相似文献   

5.
I Hagan  M Yanagida 《Nature》1992,356(6364):74-76
Several mitotic and meiotic gene products are related to the microtubule motor kinesin, providing insight into the molecular basis of the complex motile events responsible for spindle formation and function. Of these genes, three have been shown to affect spindle structure when mutated. The most severe phenotype is seen in Aspergillus nidulans bimC and Schizosaccharomyces pombe cut7 mutants. In both fungi the intranuclear spindle is bipolar, with microtubules that emanate from spindle pole bodies at either pole, interdigitating in a central overlap zone. In bimC and cut7 mutants, microtubule interdigitation does not appear to take place, instead two unconnected half spindles form and chromosome separation fails. Here we report that cut7 protein concentrates on or near the spindle pole bodies throughout mitotic and meiotic nuclear division and associates with mitotic spindle microtubules in a stage-specific manner, associating with the mid-anaphase B midzone. In cut7ts mutants, spindle pole bodies stain but mitotic microtubules do not.  相似文献   

6.
R A Walker  E D Salmon  S A Endow 《Nature》1990,347(6295):780-782
A product encoded at the claret locus in Drosophila is needed for normal chromosome segregation in meiosis in females and in early mitotic divisions of the embryo. The predicted amino-acid sequence of the segregation protein was shown recently to be strikingly similar to Drosophila kinesin heavy chain. We have expressed the claret segregation protein in bacteria and have found that the bacterially expressed protein has motor activity in vitro with several novel features. The claret motor is slow (4 microns min-1), unlike either kinesin or dyneins. It has the directionality, the ability to generate torque and the sensitivity to inhibitors reported previously for dyneins. The finding of minus-end directed motor activity for a protein with sequence similarity to kinesin suggests that the dynein and kinesin motor domains are ancestrally related. The minus-end directed motor activity of the claret motor is consistent with a role for this protein in producing chromosome movement along spindle microtubules during prometaphase and/or anaphase.  相似文献   

7.
Kapitein LC  Peterman EJ  Kwok BH  Kim JH  Kapoor TM  Schmidt CF 《Nature》2005,435(7038):114-118
During cell division, mitotic spindles are assembled by microtubule-based motor proteins. The bipolar organization of spindles is essential for proper segregation of chromosomes, and requires plus-end-directed homotetrameric motor proteins of the widely conserved kinesin-5 (BimC) family. Hypotheses for bipolar spindle formation include the 'push-pull mitotic muscle' model, in which kinesin-5 and opposing motor proteins act between overlapping microtubules. However, the precise roles of kinesin-5 during this process are unknown. Here we show that the vertebrate kinesin-5 Eg5 drives the sliding of microtubules depending on their relative orientation. We found in controlled in vitro assays that Eg5 has the remarkable capability of simultaneously moving at approximately 20 nm s(-1) towards the plus-ends of each of the two microtubules it crosslinks. For anti-parallel microtubules, this results in relative sliding at approximately 40 nm s(-1), comparable to spindle pole separation rates in vivo. Furthermore, we found that Eg5 can tether microtubule plus-ends, suggesting an additional microtubule-binding mode for Eg5. Our results demonstrate how members of the kinesin-5 family are likely to function in mitosis, pushing apart interpolar microtubules as well as recruiting microtubules into bundles that are subsequently polarized by relative sliding.  相似文献   

8.
Localization of cytoplasmic dynein to mitotic spindles and kinetochores   总被引:98,自引:0,他引:98  
E R Steuer  L Wordeman  T A Schroer  M P Sheetz 《Nature》1990,345(6272):266-268
What is the origin of the forces generating chromosome and spindle movements in mitosis? Both microtubule dynamics and microtubule-dependent motors have been proposed as the source of these motor forces. Cytoplasmic dynein and kinesin are two soluble proteins that power membranous organelle movements on microtubules. Kinesin directs movement of organelles to the 'plus' end of microtubules, and is found at the mitotic spindle in sea urchin embryos, but not in mammalian cells. Cytoplasmic dynein translocates organelles to the 'minus' end of microtubules, and is composed of two heavy chains and several light chains. We report here that monoclonal antibodies to two of these subunits and to another polypeptide that associates with dynein localize the protein to the mitotic spindle and to the kinetochores of isolated chromosomes, suggesting that cytoplasmic dynein is important in powering movements of the spindle and chromosomes in dividing cells.  相似文献   

9.
Mitotic spindle organization by a plus-end-directed microtubule motor.   总被引:41,自引:0,他引:41  
K E Sawin  K LeGuellec  M Philippe  T J Mitchison 《Nature》1992,359(6395):540-543
Intracellular microtubule motor proteins may direct the motile properties and/or morphogenesis of the mitotic spindle (reviewed in ref. 3). The recent identification of kinesin-like proteins important for mitosis or meiosis indicates that kinesin-related proteins may play a universal role in eukaryotic cell division, but the precise function of such proteins in mitosis remains unknown. Here we use an in vitro assay for spindle assembly, derived from Xenopus egg extracts, to investigate the role of Eg5, a kinesin-like protein in Xenopus eggs. Eg5 is localized along spindle microtubules, and particularly enriched near spindle poles. Immunodepletion of Eg5 from egg extracts markedly reduces the extent of spindle formation in extracts, as does direct addition of anti-Eg5 antibodies. We also demonstrate that Eg5 is a plus-end-directed microtubule motor in vitro. Our results suggest a novel mechanism for the dynamic self-organization of spindle poles in mitosis.  相似文献   

10.
During anaphase identical sister chromatids separate and move towards opposite poles of the mitotic spindle. In the spindle, kinetochore microtubules have their plus ends embedded in the kinetochore and their minus ends at the spindle pole. Two models have been proposed to account for the movement of chromatids during anaphase. In the 'Pac-Man' model, kinetochores induce the depolymerization of kinetochore microtubules at their plus ends, which allows chromatids to move towards the pole by 'chewing up' microtubule tracks. In the 'poleward flux' model, kinetochores anchor kinetochore microtubules and chromatids are pulled towards the poles through the depolymerization of kinetochore microtubules at the minus ends. Here, we show that two functionally distinct microtubule-destabilizing KinI kinesin enzymes (so named because they possess a kinesin-like ATPase domain positioned internally within the polypeptide) are responsible for normal chromatid-to-pole motion in Drosophila. One of them, KLP59C, is required to depolymerize kinetochore microtubules at their kinetochore-associated plus ends, thereby contributing to chromatid motility through a Pac-Man-based mechanism. The other, KLP10A, is required to depolymerize microtubules at their pole-associated minus ends, thereby moving chromatids by means of poleward flux.  相似文献   

11.
CENP-E is a putative kinetochore motor that accumulates just before mitosis.   总被引:57,自引:0,他引:57  
T J Yen  G Li  B T Schaar  I Szilak  D W Cleveland 《Nature》1992,359(6395):536-539
The mechanics of chromosome movement, mitotic spindle assembly and spindle elongation have long been central questions of cell biology. After attachment in prometaphase of a microtubule from one pole, duplicated chromosome pairs travel towards the pole in a rapid but discontinuous motion. This is followed by a slower congression towards the midplate as the chromosome pair orients with each kinetochore attached to the microtubules from the nearest pole. The pairs disjoin at anaphase and translocate to opposite poles and the interpolar distance increases. Here we identify CENP-E as a kinesin-like motor protein (M(r) 312,000) that accumulates in the G2 phase of the cell cycle. CENP-E associates with kinetochores during congression, relocates to the spindle midzone at anaphase, and is quantitatively discarded at the end of the cell division. CENP-E is likely to be one of the motors responsible for mammalian chromosome movement and/or spindle elongation.  相似文献   

12.
Chromosomes are segregated by two antiparallel arrays of microtubules arranged to form the spindle apparatus. During cell division, the nucleation of cytosolic microtubules is prevented and spindle microtubules nucleate from centrosomes (in mitotic animal cells) or around chromosomes (in plants and some meiotic cells). The molecular mechanism by which chromosomes induce local microtubule nucleation in the absence of centrosomes is unknown, but it can be studied by adding chromatin beads to Xenopus egg extracts. The beads nucleate microtubules that eventually reorganize into a bipolar spindle. RCC1, the guanine-nucleotide-exchange factor for the GTPase protein Ran, is a component of chromatin. Using the chromatin bead assay, we show here that the activity of chromosome-associated RCC1 protein is required for spindle formation. Ran itself, when in the GTP-bound state (Ran-GTP), induces microtubule nucleation and spindle-like structures in M-phase extract. We propose that RCC1 generates a high local concentration of Ran-GTP around chromatin which in turn induces the local nucleation of microtubules.  相似文献   

13.
For high-fidelity chromosome segregation, kinetochores must be properly captured by spindle microtubules, but the mechanisms underlying initial kinetochore capture have remained elusive. Here we visualized individual kinetochore-microtubule interactions in Saccharomyces cerevisiae by regulating the activity of a centromere. Kinetochores are captured by the side of microtubules extending from spindle poles, and are subsequently transported poleward along them. The microtubule extension from spindle poles requires microtubule plus-end-tracking proteins and the Ran GDP/GTP exchange factor. Distinct kinetochore components are used for kinetochore capture by microtubules and for ensuring subsequent sister kinetochore bi-orientation on the spindle. Kar3, a kinesin-14 family member, is one of the regulators that promote transport of captured kinetochores along microtubules. During such transport, kinetochores ensure that they do not slide off their associated microtubules by facilitating the conversion of microtubule dynamics from shrinkage to growth at the plus ends. This conversion is promoted by the transport of Stu2 from the captured kinetochores to the plus ends of microtubules.  相似文献   

14.
Four ATP-binding sites in the midregion of the beta heavy chain of dynein.   总被引:27,自引:0,他引:27  
K Ogawa 《Nature》1991,352(6336):643-645
The 'motor' proteins of eukaryotic cells contain specialized domains that hydrolyse ATP to produce force and movement along a cytoskeletal polymer (actin in the case of the myosin family; microtubules in the case of the kinesin family and dyneins). There are motor-protein superfamilies in which each member has a conserved force-generating domain joined to a different 'tail' which conveys specific attachment properties. The minus-end-directed microtubule motors, the dyneins, may also constitute a superfamily of force-generating proteins with distinct attachment domains. Axonemal outer-arm dynein from sea urchin spermatozoa is a multimeric protein consisting of two heavy chains (alpha and beta) with ATPase activity, three intermediate chains and several light chains. Here I report the sequence of cloned complementary DNA encoding the beta heavy chain of a dynein motor molecule. The predicted amino-acid sequence reveals four ATP-binding consensus sequences in the central domain. The dynein beta heavy chain is thought to associate transiently with a microtubule during ATP hydrolysis, but the ATP-dependent microtubule-binding sequence common to the kinesin superfamily is not found in the dynein beta heavy chain. These unique features distinguish the dynein beta heavy chain from other motor protein superfamilies and may be characteristic of the dynein superfamily.  相似文献   

15.
A dynamin-like protein encoded by the yeast sporulation gene SPO15.   总被引:17,自引:0,他引:17  
E Yeh  R Driscoll  M Coltrera  A Olins  K Bloom 《Nature》1991,349(6311):713-715
The tightly centromere-linked gene SPO15 is essential for meiotic cell division in the yeast Saccharomyces cerevisiae. Diploid cells without the intact SPO15 gene product are able to complete premeiotic DNA synthesis and genetic recombination, but are unable to traverse the division cycles. Electron microscopy of blocked cells reveals a duplicated but unseparated spindle-pole body. Thus cells are unable to form a bipolar spindle. Sequence analysis of SPO15 DNA reveals an open reading frame that predicts a protein of 704 amino acids. This protein is identical to VPS1, a gene involved in vacuolar protein sorting in yeast which has significant sequence homology (45% overall, 66% over 300 amino acids) to the microtubule bundling-protein, dynamin. The SPO15 gene product expressed in Escherichia coli can be affinity-purified with microtubules. SPO15 encodes a protein that is likely to be involved in a microtubule-dependent process required for the timely separation of spindle-pole bodies in meiosis.  相似文献   

16.
H S Shpetner  R B Vallee 《Nature》1992,355(6362):733-735
Dynamin was initially identified in calf brain tissue as a protein of relative molecular mass 100,000 which induced nucleotide-sensitive bundling of microtubules. Purified dynamin showed only trace ATPase activity. But in combination with an activating factor removed during the purification, it exhibited microtubule-activated ATPase activity and dynamin-induced bundles showed evidence of ATP-dependent force production. Dynamin is the product of the Drosophila gene shibire, which has been implicated in synaptic vesicle recycling and, more generally, in the budding of endocytic vesicles from the plasma membrane. Dynamin also shows extensive homology with proteins that participate in vacuolar protein sorting and spindle pole-body separation in yeast, and in interferon-induced viral resistance in mammals. All members of this family contain consensus sequence elements consistent with GTP binding near their amino termini, although none has been shown to have GTPase activity. We report here that dynamin is a specific GTPase which can be stimulated to very high levels of activity by microtubules.  相似文献   

17.
Myosin V orientates the mitotic spindle in yeast   总被引:15,自引:0,他引:15  
Yin H  Pruyne D  Huffaker TC  Bretscher A 《Nature》2000,406(6799):1013-1015
Coordination of spindle orientation with the axis of cell division is an essential process in all eukaryotes. In addition to ensuring accurate chromosomal segregation, proper spindle orientation also establishes differential cell fates and proper morphogenesis. In both animal and yeast cells, this process is dependent on cytoplasmic microtubules interacting with the cortical actin-based cytoskeleton, although the motive force was unknown. Here we show that yeast Myo2, a myosin V that translocates along polarized actin cables into the bud, orientates the spindle early in the cell cycle by binding and polarizing the microtubule-associated protein Kar9 (refs 7-9). The tail domain of Myo2 that binds Kar9 also interacts with secretory vesicles and vacuolar elements, making it a pivotal component of yeast cell polarization.  相似文献   

18.
Lénárt P  Bacher CP  Daigle N  Hand AR  Eils R  Terasaki M  Ellenberg J 《Nature》2005,436(7052):812-818
Chromosome capture by microtubules is widely accepted as the universal mechanism of spindle assembly in dividing cells. However, the observed length of spindle microtubules and computer simulations of spindle assembly predict that chromosome capture is efficient in small cells, but may fail in cells with large nuclear volumes such as animal oocytes. Here we investigate chromosome congression during the first meiotic division in starfish oocytes. We show that microtubules are not sufficient for capturing chromosomes. Instead, chromosome congression requires actin polymerization. After nuclear envelope breakdown, we observe the formation of a filamentous actin mesh in the nuclear region, and find that contraction of this network delivers chromosomes to the microtubule spindle. We show that this mechanism is essential for preventing chromosome loss and aneuploidy of the egg--a leading cause of pregnancy loss and birth defects in humans.  相似文献   

19.
为了合理控制铣削过程中产生的振动,利用切削振动信号、机床主轴电机功率和主轴转速信号等多控制条件,设计了数控铣床切削振动控制系统。对VMC850数控铣床切削振动信号进行了检测,通过时域和频域分析确定了均方根和功率谱密度等数控机床切削振动控制的参量的阈值和切削加工参数的回避值;结合主轴电机的功率和主轴转速等信息,对机床切削参数进行了控制,实现了对进给速度和主轴转数的智能控制。该控制系统的使用,提高了数控机床的振动控制能力。  相似文献   

20.
gamma-Tubulin is a newly identified member of the tubulin family whose sequence is highly conserved from yeast to man. This minor microtubule protein is localized to the microtubule organizing centres and a mutation in the gene encoding it produces a microtubuleless mitotic arrest in the filamentous fungus Aspergillus nidulans. Here we investigate the in vivo function of gamma-tubulin in mammalian cells using a synthetic peptide to generate a polyclonal antibody that binds to a highly conserved segment of gamma-tubulin. After microinjection into cultured mammalian cells, immunofluorescence localization revealed that this antibody binds to native centrosomes at all phases of the cell cycle. In the presence of the gamma-tubulin antibody, microtubules fail to regrow into cytoplasmic arrays after depolymerization induced by nocodazole or cold. Furthermore, cells injected immediately before or during mitosis fail to assemble a functional spindle. Thus in vivo gamma-tubulin is required for microtubule nucleation throughout the mammalian cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号