共查询到19条相似文献,搜索用时 70 毫秒
1.
杨华芬 《长春工程学院学报(自然科学版)》2009,10(1):68-71
提出了基于改进聚类算法的模糊神经网络的短期负荷预测方法。首先,利用改进聚类算法确定模糊神经网络的结构,然后利用混合学习算法训练该网络的前件和结论参数,最后向训练好的模糊神经网络输入相关的影响因素数据进行预测。预测结果显示,改进的模糊神经网络可以获得较高的预测精度,所以有更好的使用价值。 相似文献
2.
基于一种新的模糊系统和神经网络的优点融合在一起,并利用BP算法优化模糊神经网络参数,提升网络运算性能. 相似文献
3.
基于神经网络的短期电力负荷预测 总被引:2,自引:0,他引:2
采用神经网络方案来进行短期电力负荷预测,探讨了负荷模型分类模,对应用于实际的神经网络算法进行了具体处理,如数据的归一化问题,网络权值与阈值的初始值选定,训练样本的选择策略等。 相似文献
4.
自适应神经网络在短期负荷预测中的应用 总被引:2,自引:0,他引:2
采用基于混沌算法的自适应预测模型,应用于电力系统短期负荷预测.选取重构相空间中的饱和嵌入维数作为神经网络的输入节点数,适当选择非线性反馈项,能使网络的动力学在权空间具有混沌行为.通过进化算法建立一种自适应机制,使得网络能够根据学习和训练的结果优化非线性反馈项.算例表明,该算法具有很强的自适应能力和鲁棒性,精度高. 相似文献
5.
首先在对供热负荷预测算法的发展现状主要成果阐述的基础上,对影响供热预测因素采用模糊量化的方式进行研究处理,并由此推断将模糊神经网络算法应用于供热负荷预测可以得到良好的效果.研究模型的设计核心是BP神经网络,即将模糊量化后的影响因素作为系统的输入值,去调整神经网络的权值,从而得到预测的网络模型.建立预测模型和预测策略后,可以采用Matlab科学计算软件开发程序对预测模型效果进行模拟仿真,结果表明,预测的结果能够满足要求,相对误差在合理的范围内,并且模糊神经网络算法比单纯神经网络算法具有更好的预测精度和鲁棒特性,从而达到节能的目的.且适应性强,可以应用到类似的供热工程上. 相似文献
6.
基于神经网络的空调负荷混沌优化预测 总被引:11,自引:0,他引:11
从空调负荷预测的目的出发,详细介绍了一种基于神经网络的混沌优化方法,对误差函数及搜索方法作了适当的改进,建立了一个混沌神经网络模型。并用此改进的模型对一实例进行了空调负荷预测,结果表明该方法简便、足够准确可靠。 相似文献
7.
短期电力负荷预测是工程技术人员安排电力调度的重要依据.研究了利用混沌理论与RBF神经网络相结合实现短期电力负荷预测的方法.并用该方法预测湖南某地区的月负荷,预测的数据准确率较好,为短期电力负荷预测提供了一条新的途径. 相似文献
8.
电力负荷的混沌预测方法 总被引:9,自引:0,他引:9
借助混沌分析理论介绍了电力负荷时间序列的混沌性识别技术,给出了一种基于混沌负荷序列的预测方法-基于相空间轨迹演化模式的预报模型。该方法具有预测精度高、计算速度快的优点,在短期负荷预测中可获得相当满意的结果。 相似文献
9.
针对目前常用方法在解决负荷预测问题时,结果往往难以达到工程要求精度的现状,利用过程神经网络输入为时间函数以及预测精度高的特点,建立了基于过程神经网络的电力系统短期负荷预测模型;给出了模型的结构,基于函数正交基展开的离散数据拟合方法以及模型的学习算法.针对东北某地区电网的日负荷数据,进行了模型训练和负荷预测正确性的研究.结果表明,所建立的预测模型对负荷的预测准确率高,优于BP神经网络负荷预测模型的预测结果. 相似文献
10.
11.
基于神经元网络的短期电力负荷预测 总被引:7,自引:0,他引:7
基于多层感知器可任意精度逼近线性或非线性函数的基本原理,提出一种考虑气候影响因素的多层前馈神经网络的短期负荷预测方法,并给出相应的反向传播算法(BP)的构造过程和训练方法,研究结果表明,基于神经元网络的短期电力负荷预测方法具有精度高的特点,负荷预测结果的相对误差小于3.67%。 相似文献
12.
基于自组织特征映射神经网络的短期负荷预测 总被引:5,自引:0,他引:5
提出了一种基于自组织特征映射神经网络(Kohmonen网络)的短期负荷预测方法,根据Kohonen网络的聚类特性,样本在输入时就已分好类。输入既有与负荷曲线平滑性有关的数据又有反映负荷周期性变化的数据。在学习训练时,区别于普通的无监督竞争学习采用有监督竞争学习方式,缩短了学习时间,提高了学习精度。实例分析征明了该方法的有效性。 相似文献
13.
电力系统短期负荷预测的多神经网络Boosting集成模型 总被引:4,自引:0,他引:4
提出了一种改进的多神经网络集成自适应Boosting回归算法.算法中采用相对误差模型代替绝对误差模型,可以更接近于回归预测问题的要求,并在Boosting迭代过程中,在对训练集采样得到新的训练子集的同时,也对校验集采样得到新的校验子集,保证了两者的一致性.进而采用美国加州电力市场的实际数据,建立了由多个神经网络集成的电力系统短期负荷预测模型.预测结果表明,与传统的单网络预测模型相比,Boosting集成预测模型能显著提高模型输出的稳定性,增强网络结构及模型选择的可靠性,获得更高的预测精度. 相似文献
14.
电力系统短期负荷预测是电力生产部门的重要工作之一,本文利用BP神经网络进行电力系统短期负荷预测时,根据影响因素确定了模型构成,并对输入变量选择进行了讨论,典型算例的计算表明该方法是有效的。 相似文献
15.
一种基于模糊逻辑和神经网络的电力负荷预测方法 总被引:12,自引:2,他引:12
应用模糊理论、人工神经网络等智能技术,确定了有效的电力系统短期负荷预测方法,其中着重考虑了天气因素对电网负荷的影响,并开发了实用化的负荷在线预测软件,该软件是基于Windows的应用程序,具有开放式的结构和友好的人机接口,可用于每小时或每15min的负荷预测,测试结果表明,该方法具有良好的预测精度。 相似文献
16.
针对BP神经网络的固有缺陷,如训练速度慢,易收敛于局部极小点及全局搜索能力弱等,改进了传统BP算法,并采用遗传算法设计和优化神经网络结构参数,在此基础上建立了基于遗传算法的人工神经网络负荷预测模型,预测仿真结果表明,本文所提出的方法在预测精度和收敛速度方面均得到了改进。 相似文献
17.
基于改进粒子群算法的电力系统负荷预测 总被引:1,自引:0,他引:1
为了提高电力系统负荷预测的精度,并考虑到电力系统负荷的混沌特性,提出了将蜜蜂进化型粒子群算法和混沌神经网络相结合的负荷预测方法.构建了混沌神经网络模型,提出了蜜蜂进化型PSO算法(Bee Evolution Modifying Particle Swarm Optimization, BEMPSO);以此来训练混沌神经网络参数,并且分别对基本粒子群优化算法和BEMPSO优化算法的模型进行仿真预测.结果表明提出的BEMPSO混沌神经网络负荷预测方法具有较强的泛化能力和较高的精度. 相似文献
18.
提出了一种新的短期电力负荷预报方法。该法首先将小时电力负荷解成增长趋势、日模式、周模式、气候敏感及随机变动等分量,然后应用人工神经网络等方法对各分量分别预报,最后由各负荷分量相失加得到小时负荷预测值。并以我国某省实际电力系统负荷预报为例,说明了所提方法的有效性。 相似文献
19.
基于事例推理短期负荷预测方法的改进 总被引:2,自引:0,他引:2
针对基于事例推理(CBR)短期负荷预测中的事例库组织,提出第一级按不同的时刻和星期类型粗分类、第二级按照模糊聚类方法细分类的二级分类方法,可以很好地实现不同预测环境之间的相似性和相异性;针对事例的检索,提出模糊优先比的定量属性检索方法,按此方法进行检索不但可以提高检索效率,还可以对检索过程进行控制.实际算例表明,以此方法进行负荷预测的周平均相对误差为2.620%,低于一般的CBR方法和单一预测方法. 相似文献