首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through studying geo-geochemical characteristics and determining Sm-Nd and Rb-Sr isotopical ages in the Kanggur magnetite-chlorite formation gold deposit, some conclusions can be achieved: Sm-Nd isochron age is (290.4 ± 7)Ma, Rb-Sr isochron age is (282.3 ± 5)Ma, mineralization is Late Hercynian and the formation of this gold deposit is related to the macroscopic Huangshan-Qiugemingtashi ductile shear zone which is produced as a result of collision between the Tarim plate and the Junggar plate.  相似文献   

2.
A Sm_Nd age of (228±42) Ma with initial ε Nd =-16.4 for the Renjiawan pyroxenite intrusion in the North Dabie terrane is reported. This age with another Sm_Nd age of (230±44) Ma for the Zhujiapu pyroxenite in the same terrane documents that the pyroxenite in the North Dabie terrane are formed during continental subduction time of the Yangtze craton in the Triassic.  相似文献   

3.
Here we report the first direct Rb-Sr dating of pyrites and ores using sub-sampling from lode gold deposits in Linglong, Jiaodong Peninsula, which is a supra-large lode gold deposit and propose this as a useful geochronological technique for gold mineralization with poor age constraint. The Rb-Sr data of pyrites yield an isochron age of (121.6±8.1) Ma, whereas those of ore and ore-pyrite spread in two ranges from 120.0 to 121.8 Ma and from 110.0 to 111.7 Ma. Studies of characteristic of gold deposit and microscopy of pyrite and quartz indicate that the apparent ages of ore and ore-pyrite are not isochron ages, only mixed by two end members, i.e. the primitive hydrothermal fluids and wall rocks, whereas the isochron age of pyrite sub-samples constrains the age of gold mineralization (121.6±8.1) Ma, i.e. early Cretaceous, which is in good agreement with the published SHRIMP zircon U-Pb ages.  相似文献   

4.
Emplacement ages of lamproites that comprise lamproite and olivine lamproite in Zhenyuan County, Guizhou Province, China, have been constrained by the whole-rock Sm-Nd and Rb-Sr isochron methods and the whole rock K-Ar method. Intrusive activities of lamproites in the Sinantang area of Zhenyuan County, Guizhou Province, took place during the Late Cambrian, as indicated by the Sm-Nd isochron ages ( t ) = (503 ± 17) (2σ) Ma and by the Rb-Sr isochron ages ( t ) = (501.2 ± 4.6) (2σ) Ma. Intrusive activities of olivine lamproites at the Maping with Ⅱ-type diamond and Xitou in Zhenyuan County, Guizhou Province, took place from the Late Cambrian to the Early Ordovician, as evidenced by the Sm-Nd isochron ages ( t ) = (502 ± 27) (2σ) Ma and by the Rb-Sr isochron age ( t ) = (502 ± 27) (2σ) Ma. This suggests that the upwelling hot materials derived from the deep mantle were emplaced from the Late Cambrian to the Early Ordovician (503-497 Ma), while the time terminal of cooling of the geothermal event of magmatism-tectonism probably was at 442.64-435.54 Ma, as dated by the whole rock K-Ar method.  相似文献   

5.
There are two generations of white micas in retrograded coesite-bearing eclogite from the Yangkou area near Qingdao, eastern China. The secondary phengite developed along the folliations in eclogite is the majority of the white micas. Nd and Sr isotopic disequilibriums between garnet and retrograded omphacite as well as secondary phengite have been observed. Consequently, the Rb-Sr ages ((193 ± 4) Ma―(195 ± 4) Ma) given by the tie lines of the secondary phengite + garnet or whole rock may predate the formation time of the phengite. The Rb-Sr age of (183 ± 4) Ma given by the secondary phengite + retrograde omphacite is much closer to the formation time of the phengite indicating the retrograde age of eclogite instead of a cooling age of eclogite at 500℃.  相似文献   

6.
Diagenetic-metallogenic ages of pyritic cherts formed by the syn-sedimentation of hydrothermal vent and ages of the Jinchang Rock Formation in the Mojiang large nickel-gold deposit in the Ailaoshan gold metallogenic belt have been discussed on the basis of chronology of isotopic geochemistry. Nickel-gold-bearing pyritic cherts in the mining were formed by syn-sedimentation of hydrothermal vent in the Late Devonian, i.e. age by Sm-Nd isochronal method (t) = (358±8.6) (2σ) Ma and age by Rb-Sr isochronal method (t) = (354.7±0.72) (2σ) Ma. On the other hand, deep-water cherts from the Jinchang Rock Formation of the Upper Devonian in the area were initiated at the same time; that is, age by Sm-Nd isochronal method (t) = (359±21) (2σ) Ma and age by Rb-Sr isochronal method (t) = (358.02±0.30) (2σ) Ma.  相似文献   

7.
In Xinjiang, northwestern China, there are some veryimportant magmatic Cu-Ni sulfide deposits hosted by ma-fic-ultramafic complexes. In addition to the Jingbulake inwestern Tianshan and the Xingdi in northeastern Tarimblock, the others are concentrated in the Kalatongke andHuangshan-Jingerquan mafic-ultramafic complex beltsand two largest Cu-Ni sulfide deposits occur in the Kala-tongke No.1 and Huangshandong complexes. In the pastdecade, a great number of researches have been conductedfo…  相似文献   

8.
The Rb-Sr isotopic dating of pyrite mineral from ore deposits can directly provide mineralization age. However, many geological factors may affect the Rb-Sr isotopic system,which baffles application of this method. Employing ultra-low procedural blank Rb-Sr method,we have dated pyrites separated from the No. 4 breccia pipe of the Qiyugou gold deposit,western Henan Province. Single grains of euhedral pyrite crystal with few microcracks yield an isochron age of 126 ± 11 Ma, which represents time of the main mineralization stage of the deposit. Pyrite grains of cataclastic type show nevertheless scattered Rb-Sr isotopic composition and no reasonable isochron can be defined. Crystal morphology and mineral inclusion studies reveal that Rb and Sr of pyrite mineral probably are preserved mainly in biotite, K-feldspar, and sericite mineral inclusions. The dating results likely suggest that cataclastic pyrite is not suitable for the Rb-Sr dating due to modification of the Rb-Sr isotopic system by later hydrothermal activity of fluid.  相似文献   

9.
The U-Pb isotope compositions of rutile, omphacite and garnet in the eclogite from the Jinheqiao area in the Southern Dabie ultrahigh-pressure metamorphic zone were analyzed. The consistent high precision U-Pb age (218 ± 1.2) Ma of rutile in eclogite from the Dabie Mountains was obtained by two ways of isochron and common Pb correction based on the composition of omphacite. This proves that the omphacite in eclogite has a U/Pb ratio (m = 2.8) low enough to be used for common Pb correction in the analyses of rutile. Under the rapid cooling condition (40℃/Ma) the closure temperature for U-Pb diffusion in rutile is about 470℃. Thus, this U-Pb age of rutile proves that 218 Ma should be the cooling age of eclogite at 470℃ instead of the peak metamorphic age.  相似文献   

10.
U-Pb zircon dating by LA-ICP-MS andSHRIMP for one olivine pyroxenite yields complex agepopulations including Mesozoic ages of 97-158 Ma and 228±8.7 Ma, Early Paleozoic ages of 418--427 Ma, Paleoprotero-zoic age of 1844±13 Ma, Neoarchean age of 2541±54 Ma andmiddle Archean age of 3123±4.4 Ma. The 97--158 Ma and228±8.7 Ma zircons show typical igneous oscillatory zona-tion in CL images, suggesting two episodes of magmaticevents. Overlapping of the 97-158 Ma ages with that ofgranulite xenoliths indicates that the Mesozoic granu-lite-facies metamorphism was induced by heating from thebasaltic underplating at the base of the lower crust. Bothprocesses lastcd at least from about 158 to 97 Ma. Ages of 418--427 Ma could be records of the subduction of Mongoliaoceanic crust under the North China craton. Ages of 1.84 Ga,2.54 Ga and 3.12 Ga correspond to the three importantcrust-mantle evolutionary events in the North China craton,and imply preservation of Precambrian lower crust in thepresent-day lower crust.  相似文献   

11.
This study presents zircon and garnet ages of a mafic granulite from the high-grade Variscan basement of the Black Forest, Germany and discuss isotope closure temperature of garnet Sm-Nd and U-Pb systems. Zircon grains yield 207Pb/206Pb ages between ~340 and ~414 Ma by the U-Pb and evaporation methods. In contract, garnet dating gives Sm-Nd and Pb-Pb isochron ages of (398±3) Ma and (411±14) Ma, respectively, which are older than most of zircon ages. These data imply that most of zircons lost radiogenic Pb, probably due to metamictization or recrystallisation during the granulite-facies metamorphism (~800℃) at ~340 Ma. Garnet Sm-Nd and U-Pb systems preserve chronological information of pro-grade metamorphism, probably profiting from a fluid-absence metamorphic environment. These results demonstrate that garnet mineral can be a better candidate than zircon mineral to date high-grade metamorphism by the U-Pb and Sm-Nd methods in some cases.  相似文献   

12.
Greenschist-facies metasedimentary and metaigne- ous rocks are frequently found to occur continuously along convergent plate margins where high pressure (HP) or ultrahigh pressure (UHP) metamorphic rocks also crop out[1-7]. Geological investigations of co…  相似文献   

13.
The geochronological works for the Hannan intrusive complex, cosisting of the gabbro-quartz dio-rite-plagiogranite bodies, in the north border of the Yangtze craton block, adjoining the Qinling orogen, are reported, because its age and genesis are of great importance to research of the tectonic evalutional history for the Qinling orogen and of the rifted processes for the Late Proterozoic supercontinent Rodinia. A good isochron of t=(837±26) Ma (2σ), corresponding to INd=0.51165±2(2σ), εNd(t)=+1.9, MSWD1.02, was difined by the Nd isotopic analytical results for the 21 whole-rock samples from the varied lithological complex bodies, but for the Rb-Sr isotopic aralytical data there is no isochron. The 40Ar/39Ar plateau age of the biotite, sorted from plagiogranites, is (796±20) Ma(2σ), and yet for the Rb-Sr isotopic data of the plagiogranite whole-rock samples (WR) and the sorted biotite (Bio), plagioclase (Plag) and apatite (Apt) mineral samples from the plagiogranitewhole-rock samples, an isochron of t=(824.86±3.8) Ma (2σ) with ISr=0.70393±14(2σ), MSWD2.44 is given. The U-Pb isotopic results for the single zircon, sorted from pla-giogranite samples, yielded an upper and a lower intercept ages of -876 Ma and -273 Ma. The Nd isotope data of complex indicate that it is probably the products of crystallization differentiation from the magma with 3333Nd>0 when the rapid uplift in 837-800 Ma took place in the northern border of the Yangtze craton block.  相似文献   

14.
In situ zircon U-Pb ages for the recently discovered Zhunuo porphyry copper deposit in the western part of the Gangdese metallogenic belt in Tibet were determined by sensitive high-resolution ion microprobe (SHRIMP). The ages can be divided into two separate groups, reflecting more than four major tectono-magmatic events in the area. The 62.5±2.5 Ma age of inherited zircons may be related to the volcanic eruption of the Linzizong Group formed shortly after the India-Asia continental collision. The 50.1±3.6 Ma age most likely corresponds to the time of underplating of mantle-derived mafic magma in Gangdese. The 15.6±0.6 Ma age obtained from magmatic zircons is interpreted as the age of crystallization of the Zhunuo ore-forming porphyry. Finally, a molybdenite Re-Os isochron age of 13.72±0.62 Ma is consistent with another zircon U-Pb age of 13.3±0.2 Ma, representing the time of copper mineralization. These ages, in combination with available literature data, indicate that magmatic crystallization and copper mineralization in the Gangdese metallogenic belt became gradually younger westward, and further suggest that the Zhunuo porphyry copper deposit was formed in the same tectonic stage as other porphyry copper deposits in the eastern and central Gangdese belt. This conclusion provides critical information for future exploration of porphyry copper deposits in western Gangdese.  相似文献   

15.
U-Th-Pb chemical dating of monazite with the electron microprobe is a new method developed in the last dec-ade[1,2]. It is attracting more and more attention for its ad-vantages of quickness, cheapness and relative high reli-ability[3]. Although its precision (±10?30 Ma)[4,5] is not as high as the ion-probe (SHRIMP), it has very high spatial resolution (1?2 μm), more superior than other in-situ techniques for analyzing compositions of zoned monazite crystals of less than 50 μm in size. …  相似文献   

16.
The granodiorite-tonalite rock occurred in ophiolitic melange was discovered in Buqingshan area, Qinghai Province. Its Rb-Sr isochron age is 578.15 ± 54.4 Ma which belongs to Early Paleozoic. The rock, belonging to calcic-alkaline series, has the features of island-arc granite, which hints that oceanic crust subduction and island-arc magmatism occurred in this area in Early Paleozoic. This discovery is of great significance to recognize the tectonic framework and evolution of this area even as far as the Central Orogenic Belt.  相似文献   

17.
An ophiolite belt is exposed to the northern edge of Altun Tagh Mountain. Geochronological researches were made on gabbro and basalt. Sm-Nd isochron age of gabbro is (829 ± 60) Ma, while the age of gabbro mixed basalt is (949 ± 62) Ma. The dating of Sm-Nd isochron proves that ophiolite formed in (829 ± 60) Ma, which implies that the northern half of Tarim (or north Tarim Block) had been separated by an ocean from the southern half of Tarim and Qaidarn (or south Tarim Block) until (829 ± 60) Ma. The south Tarim Block could accrete to the north Tarim Block at the beginning of Sinian, thereby forming the north Altun Tagh suture. The Sinian system would be the first cover on the amalgamated Tarim craton.  相似文献   

18.
The plagioclase amphibolites from Kuokesu area, Kuruktag, Xinjiang occur as enclaves embedded in the granodioritic gneiss. In the light of major elements and REE data, the parent rocks of the plagioclase amphibolites belong to weak_alkaline basalts. Their Nd model ages mainly range from 2 832 to 3 075 Ma. The seven plagioclase amphibolites yield a reasonable good isochron age of (828±86) Ma(2σ) with I Nd =0.510 981±82, ε Nd ( t )=-11.5±1.6. Such a case shows the existence of great proportion of the Archaean mafic crustal basement on the Kuokesu area. The strong tectonic_thermal event at about 820 Ma made the Sm_Nd isotope of the metamorphic rocks homogenization. This event would be associated with the Tarim Movement.  相似文献   

19.
Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin   总被引:23,自引:0,他引:23  
Zircon LA-ICP MS U-Pb dating of six metamorphic rocks and a metagranite (breccia) from southern basement of the Songliao Basin are reported in order to constrain the formation ages of basement. The basement metamorphic rocks in the Songliao Basin mainly consist of metagabbro (L45-1), amphibolite (SN117), metarhyolitical tuff (G190), sericite (Ser) schist (N103), chlorite (Chl) schist (T5-1), biotite (Bi)-actinolite (Act)-quartz (Q) schist (Y205), and metagranite (L44-1). The cathodoluminesence (CL) images of the zircons from metagabbro (L45-1) and metagranite (L44-1) indicate that they have cores of magmatic origin and rims of metamorphic overgrowths. Their U-Pb isotopic ages are 1808±21 Ma and 1873±13 Ma, respectively. The zircons with oscillatory zoning from amphibolite (SN117) and Chl schist (T5-1), being similar to those of mafic igneous rocks, yield ages of 274 ± 3.4 Ma and 264 ± 3.2 Ma, re-spectively. The zircons from metarhyolitical tuff (G190) and Ser schist (N103) display typical magmatic growth zoning and yield ages of 424 ± 4.5 Ma and 287 ± 5.1Ma, respectively. Most of zircons from Bi-Act-Q schist (Y205) are round in shape and different in absorption degree in the CL images, implying their sedimentary detritals. U-Pb dating yield concordant ages of 427 ± 3.1Ma, 455 ± 12 Ma, 696 ± 13 Ma, 1384±62 Ma, 1649±36 Ma, 1778±18 Ma, 2450±9 Ma, 2579±10 Ma, 2793±4 Ma and 2953±14 Ma. The above-mentioned results indicate that the Precambrian crystalline basement (1808―1873 Ma) exists in the southern Songliao Basin and could be related to tectonic thrust, and that the Early Paleozoic (424―490 Ma) and Late Paleozoic magmatisms (264―292 Ma) also occur in the basin basement, which are consistent with the ages of the detrital zircons from Bi-Act-Q schist in the basement.  相似文献   

20.
Eclogite cobbles were discovered by Wang et al. (2001) in the Fenghuangtai Formation of the northern margin of Dabie Mountains in the Dushan area of Anhui Province, China[1]. They proposed that after the formation during the Triassic, the high-pressure (HP) and ultra-high-pressure (UHP) metamorphic rocks reached the sur-face through exhumation and uplifting before the late Ju-rassic. However, they have not provided any evidence about isotopic ages. One kind of cobbles of HP-UHP rocks w…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号