首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 93 毫秒
1.
赵琴  高丽 《河南科学》2012,30(1):15-17
对任意的非负整数n,著名的F.Smarandache LCM函数SL(n)定义为最小正整数k,使得n│[1,2,…,k],其中[1,2,…,k]表示1,2,…,k的最小公倍数.利用初等及解析的方法研究函数SL(n)与素因数和函数ω軍(n)的加权均值分布,并给出一个有趣的加权均值分布的渐近公式.  相似文献   

2.
《河南科学》2016,(1):7-10
利用初等及解析的方法研究均方差(SL(n)-■(n)~2的均值分布问题,并给出一个有趣的均值分布的渐近公式.  相似文献   

3.
目的研究一个包含Smarandache函数S(n)及Smarandache LCM函数SL(n)的混合均值问题。方法利用初等及解析方法以及组合技巧。结果证明了在一个给定区间[1,x]上,满足S(n)≠SL(n)的正整数的个数与x相比,是一个高阶无穷小。给出了一个混合均值公式。结论函数S(n)与SL(n)的值几乎处处相等。  相似文献   

4.
F.Smarandache LCM函数SL(n)定义为使得n|[1,2,3,…,k]整除1,2,3,…,k的最小公倍数的最小正整数k.主要利用SL(n)的性质及Mangoldt函数∧(n)的定义研究了∧(n)·SL(n)的均值性质,并得到了渐近公式∑n≤x∧(n)SL(n))=X2∑ki=1Ci/㏑i-1x+O(x2/㏑kx).  相似文献   

5.
关于F.Smarandache函数的一个问题   总被引:1,自引:0,他引:1  
朱敏慧 《江西科学》2009,27(3):337-338
利用解析的方法研究F.Smarandache函数与除数函数的混合均值,得出了2个较为精确的渐近公式。  相似文献   

6.
利用初等解析的方法研究了复合函数S(bk(n))与数论函数U(n)的均方差均值分布,并给出了一个较强的渐近公式。  相似文献   

7.
刘华  吕松涛 《江西科学》2009,27(3):325-327
对任意正整数n,著名的F.Smarandache LCM函数SL(n)定义为最小的正整数七,使得n|[1,2…,k],其中,n|[1,2…,k]表示1,2,…,k的最小公倍数。而函数Z(n)定义为最小的正整数k,使得n≤k(k+1)/2,即Z(n)=min|k:n≤k(k+1)/2|,主要目的是利用初等及解析方法研究复合函数乩(Z(n))的均值性质,得到了一个有趣的渐近公式。  相似文献   

8.
Smarandache LCM函数与其对偶函数的混合均值   总被引:1,自引:1,他引:0  
研究Smarandache LCM函数SL(n)与其对偶函数的混合均值问题,并利用初等方法和组合方法给出一个有趣的混合均值公式,结果显示,SL(n)函数的值与其对偶函数的值几乎处处不同.  相似文献   

9.
10.
对任意的非负整数n,著名的Smarandache LCM函数SL(n)定义为最小的正整数k,使得n|[1,2,…,k],其中n|[1,2,…,k]表示1,2,…,k的最小公倍数。设k≥2为给定的整数,bk(n)定义为最小的正整数使得bk(n)·n为完全k次幂,则称bk(n)为n的k次补数。本文主要利用初等及解析方法,研究复合函数SL(bk(n))与n的最大素因子函数P(n)的均方差,得到了一个较强的渐近公式。  相似文献   

11.
对任意正整数n,Smarandache LCM对偶函数是满足[1,2,…,k]| n的最小正整数,其中[1,2,…,k]代表1,2,…,k的最小公倍数.用初等方法研究SL*(n)/n,并给出一个有趣的渐近公式.  相似文献   

12.
朱民 《江西科学》2012,30(6):714-715,739
对任意正整数n,著名的Smarandache函数S(n)定义为最小的正整数m使得n|m!,即S(n)=min{m∶n|m!,m∈N}。本文的主要目的是利用初等方法研究Smarandache函数S(n)与除数函数σα(n)的混合均值,并给出了一个较强的渐近公式。  相似文献   

13.
对任意的正整数n,定义数论函数W(n)为最小的正整数k,使得n≤k(3k+1),即()W(n)=min{k:n≤k(3k+1),k∈N}.利用初等及解析的方法研究复合函数S(W(n))的均值分布,并获得了较强的均值分布的渐近公式.  相似文献   

14.
赵琴  高丽 《河南科学》2012,30(2):153-155
对任意的正整数n,定义数论函数W(n)为最小的正整数k,使得n≤k(3k+1),即W(n)=min{k:n≤k(3k+1),k∈N}.利用初等及解析的方法研究复合函数S(W(n))的均值分布,并获得了较强的均值分布的渐近公式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号