共查询到14条相似文献,搜索用时 93 毫秒
1.
对任意的非负整数n,著名的F.Smarandache LCM函数SL(n)定义为最小正整数k,使得n│[1,2,…,k],其中[1,2,…,k]表示1,2,…,k的最小公倍数.利用初等及解析的方法研究函数SL(n)与素因数和函数ω軍(n)的加权均值分布,并给出一个有趣的加权均值分布的渐近公式. 相似文献
3.
杨明顺 《西北大学学报(自然科学版)》2010,(5)
目的研究一个包含Smarandache函数S(n)及Smarandache LCM函数SL(n)的混合均值问题。方法利用初等及解析方法以及组合技巧。结果证明了在一个给定区间[1,x]上,满足S(n)≠SL(n)的正整数的个数与x相比,是一个高阶无穷小。给出了一个混合均值公式。结论函数S(n)与SL(n)的值几乎处处相等。 相似文献
4.
朱民 《西南民族学院学报(自然科学版)》2013,39(4)
F.Smarandache LCM函数SL(n)定义为使得n|[1,2,3,…,k]整除1,2,3,…,k的最小公倍数的最小正整数k.主要利用SL(n)的性质及Mangoldt函数∧(n)的定义研究了∧(n)·SL(n)的均值性质,并得到了渐近公式∑n≤x∧(n)SL(n))=X2∑ki=1Ci/㏑i-1x+O(x2/㏑kx). 相似文献
5.
6.
利用初等解析的方法研究了复合函数S(bk(n))与数论函数U(n)的均方差均值分布,并给出了一个较强的渐近公式。 相似文献
7.
对任意正整数n,著名的F.Smarandache LCM函数SL(n)定义为最小的正整数七,使得n|[1,2…,k],其中,n|[1,2…,k]表示1,2,…,k的最小公倍数。而函数Z(n)定义为最小的正整数k,使得n≤k(k+1)/2,即Z(n)=min|k:n≤k(k+1)/2|,主要目的是利用初等及解析方法研究复合函数乩(Z(n))的均值性质,得到了一个有趣的渐近公式。 相似文献
8.
Smarandache LCM函数与其对偶函数的混合均值 总被引:1,自引:1,他引:0
闫晓霞 《内蒙古师范大学学报(自然科学版)》2010,39(3):229-231
研究Smarandache LCM函数SL(n)与其对偶函数的混合均值问题,并利用初等方法和组合方法给出一个有趣的混合均值公式,结果显示,SL(n)函数的值与其对偶函数的值几乎处处不同. 相似文献
9.
10.
对任意的非负整数n,著名的Smarandache LCM函数SL(n)定义为最小的正整数k,使得n|[1,2,…,k],其中n|[1,2,…,k]表示1,2,…,k的最小公倍数。设k≥2为给定的整数,bk(n)定义为最小的正整数使得bk(n)·n为完全k次幂,则称bk(n)为n的k次补数。本文主要利用初等及解析方法,研究复合函数SL(bk(n))与n的最大素因子函数P(n)的均方差,得到了一个较强的渐近公式。 相似文献
11.
对任意正整数n,Smarandache LCM对偶函数是满足[1,2,…,k]| n的最小正整数,其中[1,2,…,k]代表1,2,…,k的最小公倍数.用初等方法研究SL*(n)/n,并给出一个有趣的渐近公式. 相似文献
12.
对任意正整数n,著名的Smarandache函数S(n)定义为最小的正整数m使得n|m!,即S(n)=min{m∶n|m!,m∈N}。本文的主要目的是利用初等方法研究Smarandache函数S(n)与除数函数σα(n)的混合均值,并给出了一个较强的渐近公式。 相似文献
13.
对任意的正整数n,定义数论函数W(n)为最小的正整数k,使得n≤k(3k+1),即()W(n)=min{k:n≤k(3k+1),k∈N}.利用初等及解析的方法研究复合函数S(W(n))的均值分布,并获得了较强的均值分布的渐近公式. 相似文献
14.
对任意的正整数n,定义数论函数W(n)为最小的正整数k,使得n≤k(3k+1),即W(n)=min{k:n≤k(3k+1),k∈N}.利用初等及解析的方法研究复合函数S(W(n))的均值分布,并获得了较强的均值分布的渐近公式. 相似文献