首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 194 毫秒
1.
在高径比为1.0的搅拌反应器中,研究了导流筒结构及固体含量对翼型轴流桨功耗与气含率的影响.研究发现导流筒的安装会降低功耗,提高气含率;导流筒的开孔率以16.4%为佳;翼型桨排出流向上时功耗较小,气舍率较高;功耗随固体含量的增加而增大;气液两相体系中的气含率比气液固三相体系中的气含率高;并得到在开孔率为16.4%条件下,翼型轴流桨上提操作时的气含率关联式.此外,在高径比为1.5时对双层组合桨进行了研究,并得出了与单层桨类似的结论.  相似文献   

2.
研究了搅拌桨型对自浮颗粒三相体系的搅拌混合的功耗、气含率和釜底固含量 影响,发现液高与釜径比大于1.6时三层桨的混合参数优于两层桨的,提出了最佳的搅拌桨型组合,还回归了其功耗的气含率的关联式。  相似文献   

3.
自浮颗粒三相体系的搅拌混合技术(Ⅰ)——搅拌桨的影响   总被引:1,自引:1,他引:0  
研究了搅拌桨型对自浮颗粒三相体系的搅拌混合的功耗、气含率和釜底固含量等的影响,发现液高与釜径比大于1.6时三层桨的混合参数优于两层桨的,提出了最佳的搅拌桨型组合,还回归了其功耗和气含率的关联式  相似文献   

4.
三相下喷式环流反应器的气含率和传质性能   总被引:1,自引:0,他引:1  
在三相非牛顿型流体体系中,对下喷式环流反应器的气含率和传质特性进行了实验研究。讨论了气速、液速、导流筒直径与反应器直径比、固体装填量、羧甲基纤维素钠溶液浓度及其流变特性对它们的影响。实验结果表明,气含率和传质系数随气速的增加而增加,而液速对其影响较小。在实验条件下,发现最优的导流筒直径与反应器直径比在0.4 ̄0.5这一范围,最优的固体装填量约为ψ=0.03,同时提出了气含率和容积传质系数的经验关联  相似文献   

5.
缩放型导流筒气升式内环流反应器特性:气液两相牛 …   总被引:3,自引:1,他引:2  
从气相含率、液体循环速度和体积氧传质系数方面研究气液两相牛顿流体在缩放型导流筒气升式内环流生物反应器内的流体力学与传质特性,内导流筒分别采用传统圆柱型和三种不同结构参数的缩放,实验介质为空气-水两相牛顿流体系。结果表明,与传统圆柱型导流筒比较,缩放型导流筒气相含率提高10%以上,体积氧传质系数在较大范围内提高,圆柱型导流筒反应器的液体循环量大于各缩放型导流筒反应器的液体循环量,还在Higbie穿透  相似文献   

6.
研究了内径0.382~1.16m机械搅拌釜中翼型组合桨气液两相的持气特性,建立了气含率与结构参数(包括翼型桨径、桨间距、桨下距离、通气位置、挡板形式及翼型桨排出流方向)和操作参数(包括搅拌转速及通气量)间关联的神经网络模型。考察了所建立的网络模型中各参数对气含率的影响规律。结果表明,模型具有很好的泛化能力,其泛化相对误差在±10%以内。采用开槽挡板、低位通气、适宜的桨径、桨间距和翼型桨的排出流向上的方案,在较宽的桨下距离范围内可获得较高的气含率。由于模型使用了与规模无关的无因次参数建模,因此可用于离线预测、参数优化及放大设计。  相似文献   

7.
在直径为0.30 m的不锈钢搅拌槽中,采用半椭圆管盘式涡轮(HEDT)为底桨,上提操作的宽叶翼形桨(WHU)为中、上层桨的三层组合桨,研究了25~80℃范围内气-液两相体系中的气液分散和传质性能。结果表明,气含率随温度升高而明显降低,80℃时的气含率仅为25℃时气含率的58.8%;容积传质系数(kLa)受温度的影响很小,温度从25℃上升到80℃,kLa仅增大了2%,理论计算得出80℃下kLa比25℃下增大4%,与实验值基本相符;依实验数据关联得到不同温度下的气含率和kLa与温度、功率和表观气速的经验关联式以及无因次准数关联式,关联式计算值与实验值误差在±10%以内。通过对比经验关联式中功耗、表观气速和温度的指数可以看出,气含率受温度影响最大,表观气速对气含率的影响大于功耗对气含率的影响;而功耗对kLa的影响最大,功耗影响的指数分别是表观气速和温度对kLa影响指数的2倍和4倍。  相似文献   

8.
搅拌槽内不同桨型组合的气-液分散特性   总被引:6,自引:0,他引:6  
在直径为0.476m的椭圆底搅拌槽内,分别研究径向流桨(八弯叶涡轮CDT-8)组合、轴流式搅拌桨(四叶宽叶翼形WH桨)组合及混合流型组合桨(径向流的六叶半椭圆管盘式涡轮HEDT与三窄叶翼形桨CBY)的通气功率及气含率,并得到了相应的通气功率和气含率的经验关联式。结果表明:HEDT底桨配合CBY轴流桨的混合流组合桨的RPD值下降最少,轴向流组合次之,而径向流组合桨RPD下降最多;在相同的通气搅拌功率下,在低通气量时,轴向流组合桨的气含率最高,在较高的通气流量时,混合流及径向流组合桨的气含率相当,均高于轴向流组合桨。文中的研究结果可为工业多层桨气-液搅拌槽/反应器的优化设计提供参考。  相似文献   

9.
从气相含率、液体循环速度和体积氧传质系数方面研究气液两相牛顿流体在缩放型导流筒气升式内环流生物反应器内的流体力学与传质特性.内导流筒分别采用传统圆柱型和三种不同结构参数的缩放型,实验介质为空气—水两相牛顿流体系.结果表明,与传统圆柱型导流筒比较,缩放型导流筒气相含率提高10%以上,体积氧传质系数在较大范围内提高.圆柱型导流筒反应器的液体循环量(Ar·ULr)大于各缩放型导流筒反应器的液体循环量.还在Higbie穿透理论和Kolomogoroff各向同性理论的基础上建立了体积氧传质系数与操作条件管结构参数间的关联式.  相似文献   

10.
双层桨结构自吸式反应器的气含率   总被引:1,自引:0,他引:1  
根据单层桨自吸式反应器吸入的气体主要集中在反应器上部的缺陷,采用了4种桨型作为下层搅拌桨,并研究了下层桨桨径、桨间距和导流筒的影响.测定了釜内总气含率与釜下半部的气含率,发现下层桨不仅决定气含率在釜下部的分布情况,而且对自吸式桨的气体吸入量也有很大影响,与理论推导的结果完全吻合.找到了合适的搅拌浆组合形式,该组合符合流体力学理论,在工业装置上的应用取得成功.  相似文献   

11.
热态气-液-固三相搅拌反应槽的气-液分散特性   总被引:1,自引:0,他引:1  
在直径为0.476m椭圆底搅拌槽内,以空气-去离子水-玻璃珠为实验物系,选用HEDT+WHU组合桨型,在体系温度为80~82℃时,研究热态体系中固相浓度、搅拌转速、通气流量等操作条件对气-液-固三相体系的功率消耗及气含率的影响规律。研究结果表明:在其它条件相同的情况下,热态的相对功率消耗(K)明显高于常温体系,而固相浓度对K影响不大。热态的气-固-液三相体系的气含率明显小于常温体系,但随着固含率的增加,两者气含率的差异逐渐变小。与常温体系中固体颗粒的存在对气含率基本无影响的规律不同,热态的气含率随固相浓度的增加而增加。  相似文献   

12.
研究了气液两相机械搅拌反应釜中水翼组合桨的组合方式,通气位置、搅拌方式及桨间距对通气功率下降的影响,给出了通气功率消耗关联式。当采用以水翼k5桨为下层桨、较高的通气位置及较大的桨间距为搅拌釜的几何结构时,其通气功率的下降较小。水翼桨的排出流方向、通气管出口位置及桨间距对气体循环及全釜气液流动产生协同作用,且这种协同作用会因搅拌转速的不同而对桨间距有不同的要求。  相似文献   

13.
在直径为0.476m的椭圆底搅拌槽中,采用以半椭圆管盘式涡轮(HEDT)为底桨、上提操作的宽叶翼形桨(WH_U)为中、上层桨的三层组合桨,研究24℃~95℃范围内不同温度下气-液-固体系中搅拌功率、气含率及固体颗粒完全离底悬浮特性。结果表明,体系相对功率需求(通气功率与不通气功率之比)RPD随温度的升高而增大,但随固含率的提高,温度对RPD的影响程度减弱。气含率随温度的升高而明显下降,其下降的幅度也随固含率增加而减小。本文结果及通气功率、气含率关联式对于工业热态通气三相搅拌反应器设计和操作具有一定的参考价值。  相似文献   

14.
研究了气升式内循环反应器内的气含率与液体循环。反应器包含一个传统的导流筒和三段缩放型导流筒。通过实验分别对气-水、气-CMC(羧甲基纤维素)溶液两相系统和气-水-树脂颗粒三相系统进行了研究。用两相漂移通量模型对三相牛顿流体和两相非牛顿流体进行了评价。结果表明,三段缩放型导流筒内的气含率高于传统的导流筒,且随表观气速而提高。在两相和三相系统中,导流筒结构参数的变化对气含率的影响很小。基于漂移通量模型的数学模型很好地描述了反应器内的液体循环。  相似文献   

15.
多层桨搅拌槽内的宏观混合特性   总被引:4,自引:0,他引:4  
在直径为0.476 m的搅拌槽内,采用电导法测定搅拌槽内单层桨和多层桨体系的混合时间。对于单层桨体系,在相同的搅拌输入功率下,不同类型的径向流桨和轴向流桨具有相同的混合时间。对于窄叶翼型CBY搅拌桨,在相同的搅拌输入功率下,单层、双层以及三层CBY搅拌桨的混合时间基本相同;而对于六直叶涡轮桨DT-6,在相同的搅拌输入功率下其混合时间随桨叶层数的增加而加长;多层CBY桨的混合时间远低于多层DT-6搅拌桨的混合时间。  相似文献   

16.
导向管喷动流化床流动特性研究   总被引:11,自引:2,他引:11  
在内径50mm的冷模装置内,考察了喷动气和流化气流速、固体粒子加入量及导向管位置对床层流动特性的影响。发现喷动气的旁路现象对粒子循环速率、中心喷泉高度及床层压降都有显著影响。流化气的引入,可抑制喷动气的旁路趋势,促进了粒子的循环。还得出了计算粒子循环速率及喷泉高度的关联式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号