首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 874 毫秒
1.
采用温和的水热法、三种不同的矿化剂成功合成了稀土铕(Eu)掺杂的氧化锌(ZnO)样品,并利用XRD、SEM、TEM和XPS对样品的结构和形貌进行了表征和分析.结果表明:稀土Eu离子以+3价成功地掺入到ZnO晶格中.并且采用不同矿化剂可以得到了不同形貌的ZnO材料,三种矿化剂生长的ZnO的形貌分别为纳米棒、纳米针和纳米片.  相似文献   

2.
以Ln(NO3)3·6H2O(Ln=La,Y,Eu)和NaF为原料,采用AAO模板制备一维LaxY1-xF3纳米管、纳米线阵列.使用XRD、EDS、SEM和TEM分别对样品的结构、组成与形貌进行表征,并研究不同摩尔分数Eu3+掺杂的LaxY1-xF3纳米管的荧光性能.荧光光谱结果表明:LaxY1-xF3:Eu3+的发射光谱均由在593nm(5 D0→7F1)和711nm(5 D0→7F4)两组线状峰构成.样品的发光强度随Eu3+的摩尔分数的增大而存在一个极大值.实验结果表明,6%Eu3+掺杂的LaxY1-xF3纳米管的荧光性能最优.  相似文献   

3.
均匀沉淀法制备ZAO纳米棒   总被引:2,自引:0,他引:2  
采用均匀沉淀法,以尿素、Zn(NO3)2·6H2O和Al(NO3)3·9H2O为原料,在水乙二醇溶液中制备了Al掺杂ZnO(ZAO)纳米棒.X射线衍射(XRD)分析表明:纳米棒为六方纤锌矿结构,掺杂的Al3+取代了Zn2+的位置,形成A1/ZnO固溶体,保持了ZnO的结构.前驱体的红外光谱(FTIR)分析表明:乙二醇的加入改变了纳米材料的表面状态.扫描电镜(SEM)和高分辨透射电镜(TEM)结果显示:随着反应体系中乙二醇体积比和Al掺杂量的增加,ZAO纳米棒的长径比先增大后减小,在V(水)/V(乙二醇)=4、Al掺杂量为5%(摩尔分数)时,制得长径比最大为25、直径为10 nm的纳米棒.  相似文献   

4.
共沉淀法合成CaMoO4:Eu3+0.18,B3+0.1红色荧光粉   总被引:1,自引:0,他引:1  
采用共沉淀法制备了Eu3+、B3+共掺杂的白光LED用CaMoO4红色荧光粉,研究了不同Eu3+和B3+掺杂量对样品发光性能的影响.利用XRD和PL分别对样品的结构和发光性能进行了表征,结果表明:900℃灼烧3 h后得到CaMoO4纯相;荧光发射强度随Eu3+掺杂量的增加先增大后减小,在Eu3+掺杂量为0.18(物质的量分数)时达到最大值;随着B3+掺杂量的增加,CaMoO4:Eu3+0.18,B3+x的荧光发射强度逐渐增强,当B3+的掺杂量超过0.1时,样品的颗粒发生严重团聚.  相似文献   

5.
采用溶胶-凝胶法制备了系列Eu3+和Y3+双稀土离子共掺杂的TiO2纳米粉体,通过X射线衍射(XRD)、BET、扫描电子显微镜(SEM)、UV-Vis漫反射和荧光光谱分析等对样品的微观结构和性能进行了表征.结果表明:Eu3+和Y3+双稀土离子共掺杂比Eu3+或Y3+单组分掺杂更能有效地抑制TiO2纳米晶体的晶型转变,提高其比表面积;UV-Vis漫反射曲线均有一定的蓝移现象;Eu3+和Y3+双稀土离子共掺杂TiO2纳米体系中均能得到Eu3+特征发射光谱;以少量Y3+替代Eu3+时,Eu3+发光性能变得更强.以甲基蓝溶液为目标污染物,考察了Eu3+和Y3+双稀土离子共掺杂TiO2纳米粉体的光催化活性.结果表明,Eu3+和Y3+双稀土离子共掺杂比单组分掺杂更能有效地提高TiO2纳米粉体的光催化活性,并且Eu3+和Y3+稀土离子的最佳掺杂配比为1:4.  相似文献   

6.
采用固相反应法(SSR)制备Eu3+掺杂的ZnAl2O4荧光粉,利用X射线衍射(XRD)、光致荧光光谱(PL)对样品进行表征.结果表明:Eu3+的掺杂浓度在不超过0.5 at.%时,样品呈现ZnAl2O4纯相尖晶石结构;样品Zn1-xAl2O4:xEu的激发光谱由200~350 nm的宽激发带和4个锐线谱(360、380、393和463 nm)两部分组成;ZnAl2O4:Eu3+荧光粉的发射光谱由Eu3+的5D0-7FJ(J=0~4)跃迁构成.  相似文献   

7.
采用负压抽滤法,在多孔纳米氧化铝模板(AAO)中制备CexCo1-xOy:Eu3+纳米线阵列.以SEM、TEM、XRD和EDS,对CexCo1-xOy:Eu3+纳米线阵列形貌、结构和元素组成进行表征,用PerkinElmer LS-55型荧光光谱仪对CexCo1-xOy:Eu3+纳米线荧光强度进行检测.结果表明:CexCo1-xOy:Eu3+纳米线为非晶态结构,纳米线尺寸均一、形貌可控.向CexOy:Eu3+纳米线掺杂Co3+时,随着Co3+摩尔百分比增大,CexCo1-xOy:Eu3+纳米线荧光发射强度逐渐减弱,当Co3+掺杂浓度达到15%时,导致CexCo1-xOy:Eu3+纳米线荧光猝灭,此可为医疗传感材料及器件设计提供技术支撑.  相似文献   

8.
采用共沉淀法制备了Eu3+、B3+共掺杂的白光LED用CaMoO4红色荧光粉,研究了不同Eu3+和B3+掺杂量对样品发光性能的影响。利用XRD和PL分别对样品的结构和发光性能进行了表征,结果表明:900°C灼烧3 h后得到CaMoO4纯相;荧光发射强度随Eu3+掺杂量的增加先增大后减小,在Eu3+掺杂量为0.18(物质的量分数)时达到最大值;随着B3+掺杂量的增加,CaMoO4:Eu03.+18,Bx3+的荧光发射强度逐渐增强,当B3+的掺杂量超过0.1时,样品的颗粒发生严重团聚。  相似文献   

9.
采用水热法,以十六烷基三甲基溴化铵(CTAB)为表面活性剂,合成了NaGd(WO4)2:Eu3+发光材料.采集XRD,SEM图谱来表征样品的晶型与形貌,利用激发光谱和发射光谱研究了材料的发光特性.结果表明,所制得的NaGd(WO4)2:Eu3+是由纳米棒组成的绒球状发光材料,球体直径为100nm,纳米棒长2~5μm.样品不仅可以被紫外光(266nm)激发,还能被近紫外光(393nm)和蓝光(464nm)有效激发,其主发射峰值位于614nm,为红色荧光成分,且当Eu3+掺杂物质的量分数为3%时,此发射峰达到最大,该发光粉可用于制造紫外光芯片激发的白光LED.  相似文献   

10.
采用水热法制备了稀土铈(Ce)掺杂的ZnO纳米棒,并利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和光致发光谱(PL)对样品进行表征.结果表明:Ce成功的掺入到ZnO中,掺杂的ZnO纳米棒有较好的结晶质量,直径约为8 nm.另外,随着Ce的掺入,紫外峰峰位发生红移,这是因为掺杂后带隙变窄,从而导致了紫外峰的红移.  相似文献   

11.
以NH4 VO3、LaCl3· nH2 O等为原料,采用水热法合成了铕掺杂LaVO4纳米粉体,通过X射线粉末衍射、扫描电子显微镜、荧光测试仪等对制备的粉体进行了表征,考察了不同水热体系pH值(4-13)对产物晶相、微观形貌及荧光性能的影响,探讨了LaVO4晶体的生长机理。结果表明:产物的微观形貌为纳米颗粒或纳米棒,pH值低于10时,产物为单斜相LaVO4纳米晶,荧光强度较低;当pH值为11-13时,产物为四方相和单斜相两相,表现出较强的荧光性。  相似文献   

12.
采用简单的水热反应合成了新型棒状、棒束状和针状花型的四方相LaVO4:Dy3+晶体,用X粉末衍射(XRD)、扫描电镜(SEM)和荧光光谱(PL)分别测试了水热产品的物相结构、颗粒形貌和荧光性能.实验结果表明,前驱体浓度和反应温度对不同形貌LaVO4:Dy3+晶体的形成起到了关键作用。花状LaVO4:Dy3+晶体比棒状和棒束状样品具有更好的蓝黄比(B/Y),同时阐述了LaVO4:Dy3+同质异形体的形成机制.  相似文献   

13.
以正硅酸乙酯为原料,制得了稀土配合物Eu(TTFA)3掺杂的SiO2杂化胶体球,采用透射电子显微镜、傅立叶变换红外光谱仪和荧光分光光度计对其显微结构和光谱特性进行了详细的研究。结果表明,SiO2杂化胶体球具有光滑的表面,平均直径约为210nm,尺寸多分散性为4.8%,主要是由四元硅氧烷环骨架结构组成。荧光光谱分析表明,Eu(TTFA)3掺杂的SiO2杂化胶体球具有Eu3+离子典型的荧光光谱特性,同时SiO2基体的存在对Eu3+离子的荧光特性具有一定的影响。  相似文献   

14.
以吡啶-2,5-二羧酸为配体,通过简单的混合溶剂热法制备了铕离子掺杂的钇基配位聚合物超微球,其粒径约为350 nm.在800℃煅烧4 h后得到了Y2 O3:Eu空心超微球.用SEM、TEM、XRD等方法对合成的产物进行了表征.此外,对掺杂不同浓度Eu3+的Y2 O3:Eu空心超微球的发光性能进行了研究.结果表明:当掺杂铕的摩尔分数为5;时,其发光强度最强.  相似文献   

15.
利用燃烧法在600℃合成了SrAl2O4:Eu2+、Dy3+、Ho3+长余辉发光材料.所得产物分别进行了XRD、TEM、FL测试和激发一定时间后的亮度测试,分析结果表明:所得燃烧产物都单一的SrAl2O4相,TEM测试表明磷光体的平均粒径在50nm左右,发射光谱表明最大发射峰位于513 nm,产物的亮度测试表明,SrAl2O4:Eu2+、Dy3+中掺入一定量的Ho3+,会使其余辉性能增强.  相似文献   

16.
用水热法制备了NaGdF4:Eu3+(0.5 mol%)发光材料,并研究了退火温度对NaGdF4:Eu3+的结构和发光性质的影响。X-射线粉末衍射(XRD)结果表明:水热合成得到六方相的NaGdF4,在空气氛的条件下,NaGdF4从六方相到立方相的相转变温度为~650℃.扫描电镜(SEM)的结果显示:具有六方相结构的NaGdF4:Eu3+发光材料的粒径为200~300nm.荧光光谱(PL)的结果表明:具有六方相结构的NaGdF4:Eu3+粉末样品的特征发射为Eu3+5 D0→7F2(615nm)跃迁发射。  相似文献   

17.
采用Pechini法制备Eu3+掺杂的CeO2:Eu3+薄膜.利用X射线衍射(XRD)﹑原子力显微镜(AFM)和光致荧光光谱(PL)对样品进行表征.结果表明:薄膜样品在700℃就结晶成纯面心立方萤石结构的多晶薄膜;PL激发谱中,300~360 nm的宽带激发峰起源于基质CeO2的吸收.  相似文献   

18.
Gd_2Mo_4O_(15):Eu~(3+)荧光材料的制备与发光性能研究   总被引:4,自引:2,他引:2  
采用了高温固相法制备了稀土离子Eu3+掺杂的Gd2M04O15:Eu3+荧光粉,通过X-射线衍射(XRD)和荧光光谱的测定,分别讨论了烧结温度、烧结时间以及稀土离子Eu3+掺杂量对发光性能的影响.测试结果表明Gd2Mo4O15:Eu3+荧光粉在近紫外区(uv)(393 nm)和蓝光区(464 nm)可以被有效的激发,Gd2Mo4O15:Eu3+荧光粉发出明亮的红光,对应于Eu3+的4f-4f跃迁,当Eu3+的掺杂浓度约为40 mol%时,在616nm处的发光强度最大.在393,464 nm的吸收分别与目前应用的紫外光和蓝光LED芯片相匹配.因此,Gd2Mo4015:Eu3+是一种可能应用在白光LED上的红色荧光材料.  相似文献   

19.
通过高温固相反应法制备掺Eu3+基质为CeO2的发光粉系列样品,并对其做X射线衍射谱(XRD)和光致发光谱(PL)检测.结果表明,在Eu3+掺杂浓度为0.2at.%~10at.%的范围内,Eu3+完全进入了CeO2的晶格,形成固溶体Ce1-xEuxO2;Eu3+的发射峰强度依赖于Eu3+的掺杂浓度,在Eu3+的含量为1at.%时最强,随后出现浓度猝灭.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号