共查询到17条相似文献,搜索用时 109 毫秒
1.
本文研究了GCr15轴承套圈的形变球化退火工艺,分析了不同工艺参数对球化效果的影响,并探讨了产生这种影响的原因.试验结果表明,采用合适的形变球化退火工艺,可以得到满足机加工要求的组织和硬度.与普通球化退火工艺相比,形变球化退火工艺不仅大大缩短退火所需时间,而且可以获得细、匀、圆的碳化物颗粒,是一种适用于中小型轴承套圈的先进生产工艺 相似文献
2.
研究了 GCr15 钢的温变形对球化退火的影响。结果表明:珠光体温变形显著加快了碳化物球化过程。随变形量、变形速度的增加及变形温度的降低,球化速度增加,变形量是影响球化速度最显著的参数。珠光体的温变形促进了在790℃加热、保温过程中渗碳体的溶解和未溶渗碳体粒子的圆整过程。还对温变形试样快速球化退火工艺进行了试验。 相似文献
3.
王洪霞 《盐城工学院学报(自然科学版)》2011,24(4):26-29
主要研究了奥氏体化加热温度和奥氏体化保温时间对GCr15钢的球化组织的影响。分析得出GCr15钢最佳的球化退火工艺为:在790℃保温3 h然后在720℃保温3 h。GCr15钢在该工艺条件下获得的碳化物颗粒细小、分布均匀、硬度适当,大大缩短了球化退火时间,节约了能源。 相似文献
4.
通过对Cr12型模具钢常规球化退火工艺的改进,得到了预冷等温球化退火新工艺。并对不同球化温度、不同退火保温时间对钢组织性能的影响进行了探讨。结果表明:改进的预冷等温球化退火新工艺合理可行,可获得硬度低于200HB、碳化物颗粒均匀细小的球化效果。球化温度和退火保温时间对组织性能均有一定影响。Cr12型模具钢理想的球化退火工艺为:球化温度940℃,保温至透烧,出炉油冷到400℃,进行730℃等温退火处理,冷却速度为<30℃/h至200℃出炉。 相似文献
5.
以T10A钢为研究对象,通过省去随炉降温过程,采用延长保温时间的方法,探寻节约时间和成本的球化退火工艺。利用光学显微镜和扫描电子显微镜(SEM)观察样品的表面形态,Image pro plus 6.0进行碳化物颗粒统计分析。实验结果表明:Φ13 mm的T10A钢在700℃入炉升温至760℃保温10 min,迅速转移至690℃保温80 min后空冷,可获得碳化物球化程度CS3级组织,心部组织与表层组织的碳化物颗粒均匀性,均高于普通球化退火和等温球化退火,且硬度与等温球化退火一致。此球化退火工艺在保证质量的前提下,碳化物的球化时间极大缩短,可提高生产效率、降低成本、提高能源利用率,拥有较好的工业化应用前景。 相似文献
6.
冷轧退火对共析珠光体钢组织球化超细化的影响 总被引:2,自引:0,他引:2
研究了冷轧变形并结合退火处理对共析钢组织球化超细化与性能的影响.结果表明:共析钢经冷轧形变量90%结合600~700 ℃退火得到了晶粒尺寸为亚微米级铁素体晶粒和颗粒状渗碳体的双相组织.颗粒状渗碳体的尺寸呈双峰分布.与传统球化处理工艺相比,球化时间明显缩短,球化组织细小;其原因是在冷变形过程中产生了高密度位错以及大量空位等缺陷,为碳原子的扩散提供了高速率扩散通道,促进了碳原子的扩散.细小渗碳体粒子在铁素体基体上的弥散分布可以用溶解-再析出机制来解释.冷轧后经700 ℃退火试样的拉伸塑性略有下降,屈服强度和抗拉强度大幅度提高,但屈强比较高. 相似文献
7.
通过正交试验对中碳钢快速球化退火工艺及其组织性能进行了研究,结果表明:新工艺可以缩短球化时间近10倍,使中碳钢的球化退火实现了省时、节能、高质量的满意效果。 相似文献
8.
均匀化退火对AZ31B镁合金组织与性能的影响 总被引:7,自引:0,他引:7
AZ31B镁合金铸态组织晶界处存在粗大的"骨骼"状Mg17Al12相以及凝固过程中产生的成分偏析,严重影响了铸锭的成形性能.为改善其成形性能,对铸态试样进行了均匀化退火试验,其保温温度为380,400,420 ℃以及保温时间为6,15,24 h.均匀化退火后Mg17Al12相呈细小的颗粒状分布在α-Mg基体上,枝晶偏析大部分得到消除,镁合金的塑性得到改善.根据均匀化退火后的组织与性能变化确定了最佳的退火工艺为400 ℃×15 h. 相似文献
9.
将C-Si-Mn系TRIP钢通过完全淬火和两相区退火相结合的工艺,得到一种以退火马氏体为基体的TRIP钢(简称TAM钢),并对比分析了TAM钢在不同温度退火后的显微组织和力学性能.结果表明,TAM钢经退火后的显微组织特征为精细规整的板条退火马氏体基体、片状残余奥氏体和贝氏体/马氏体组成的混合组织.这种组织降低了基体的硬度以及基体和第二相之间的强度比,减少了基体的位错密度.随着退火温度的提高,退火马氏体基体的板条形态逐渐消失,新生马氏体/贝氏体的团状混合组织逐渐增多.当退火温度为780℃时,综合力学性能优异,抗拉强度为1130 MPa,延伸率可达20%,强塑积为22600 MPa·%.当退火温度较低时,残余奥氏体主要以片状存在于退火马氏体板条间,有利于TRIP效应的发生. 相似文献
10.
在实验条件下对含磷TRIP(transformation inducedplasticity)钢进行临界区退火研究,主要研究了不同退火条件对实验钢组织和力学性能的影响.通过添加P元素降低钢中的Si含量,可改善表面质量,解决镀锌问题,且P价格低廉,成本降低.结果表明:随等温时间增加,贝氏体含量增加,抗拉强度增加;在两种等温温度下,残余奥氏体量都是呈先增加后降低的趋势,780℃等温时在180s时得到最大的残余奥氏体量22%,800℃等温时在90s时得到最大的残余奥氏体量20%;780℃等温180s时获得最佳力学性能,强塑积达22854MPa·%,P的加入并未引起力学性能损失,各项力学性能优良. 相似文献
11.
对含磷高强B250P钢板的连续退火工艺进行了模拟实验,通过光学金相、透射电子显微技术及拉伸实验,研究了连退工艺中加热速度、退火温度、保温时间及冷却速度对B250P钢微观组织及力学性能的影响.结果表明,B250P钢晶粒尺寸随着加热速度的增加、退火温度的升高及冷却速度的增大而增大;随着保温时间的增加,晶粒尺寸呈现出先减小后增大的趋势.退火过程中B250P钢析出相主要为纳米级的NbC和TiC,具有钉扎位错和大角度晶界及细化晶粒的作用.B250P钢的r值随着加热速度的升高而增大,随着冷却速度的增加而减小;提高退火温度和保温时间,r值先增大后减小. 相似文献
12.
在实验室条件下研究了罩式退火和快速连续退火两种方式对含硼搪瓷钢微观组织、力学性能和抗鳞爆性能的影响.结果表明:适当增加Mn,S的质量分数和添加微量B,实验钢不同方式退火板的性能均较好;连续退火板强度稍高于罩式退火板,伸长率A50和rm值明显高于罩式退火板,综合力学性能较好;连续退火板的氢扩散速率明显小于罩式退火板,主要得益于采用快速连续退火得到的实验钢中铁素体晶粒内存在大量弥散分布的渗碳体颗粒作为有效氢陷阱;采用快速连续退火可以实现含硼搪瓷钢良好的力学性能和抗鳞爆性能的匹配. 相似文献
13.
针对我国宝钢、德国维克多尔和日本东洋三种荫罩带钢,分别在730、780、830℃进行退火试验,研究退火温度对荫罩带钢力学性能和微观组织的影响.通过金相分析和常温拉伸试验,对荫罩带钢微观组织和力学性能--屈服强度、屈服延伸率进行了对比和分析.结果表明,退火后荫罩带钢发生了再结晶和晶粒长大,退火温度对屈服延伸率无影响;退火温度越高,晶粒越粗大,屈服强度越小;宝钢一次冷轧荫罩带钢优于德国和日本二次冷轧荫罩带钢,再结晶退火温度在780℃比较合适. 相似文献
14.
研究了Ti-Code12合金(Ti-0.3Mo-0.8Ni)焊后退火对组织和性能的影响.结果表明焊后退火将引起残存β相的共析分解,共析分解产物Ti2Ni相具有面心立方结构.合金的耐蚀性来源于α基体上Ti2Ni相的存在,Ti2Ni相既可在晶间沉淀,也能在晶内沉淀.本研究对Ti-Code12合金耐蚀性机理提出了直接证据. 相似文献
15.
磁场退火对无取向硅钢再结晶织构和组织的影响 总被引:1,自引:0,他引:1
为了研究磁场退火对金属材料的再结晶织构和晶粒尺寸的影响,对冷轧无取向硅钢薄板进行了普通退火以及0.1,6和12 T下的磁场退火,磁场沿轧向施加.研究表明,磁场退火显著影响再结晶织构的取向密度和晶粒尺寸,且与磁感应强度成非线性关系.磁场退火增强有利的η(〈001〉∥RD)和{100}织构,减弱不利的γ(〈111〉∥ND)织构,该效应在6 T磁场下较显著;再结晶晶粒尺寸在6 T磁场退火时较大,普通及12T磁场退火时居中,0.1 T磁场退火时较小.从磁场降低晶界可动性和提供与取向相关的附加晶界迁移驱动力的角度,分析了磁场作用机制. 相似文献
16.
双辊铸轧高速钢薄带退火时碳化物的球化机理 总被引:2,自引:4,他引:2
在实验室新建的水平式双辊铸轧机上进行了W9高速钢薄带的铸轧实验研究,得到了主要工艺参数对铸带显微组织分布的影响规律,给出了实验室条件下W9高速工具钢薄带铸轧工艺参数的最佳变化范围·研究了铸轧对高速钢薄带的组织及碳化物形态的影响,铸轧高速钢显微组织主要由马氏体、残余奥氏体及共晶碳化物组成,不存在鱼骨状莱氏体组织,薄带内的残余奥氏体的质量分数仅为10%左右·碳化物以片层状M2C型为主,呈断续网状分布在晶界上,而M6C型的鱼骨状碳化物很少·铸轧高速钢薄带的退火组织主要为索氏体组织和碳化物·碳化物球化的机理在于铸轧改善了共晶碳化物球化的动力学条件,使碳化物层片明显细化,有利于碳化物的球化,同时铸轧有利... 相似文献
17.
研究了超高强度钢 30 Cr Mn Si Ni2 A的微观结构尺寸对其疲劳性能的影响 .试验结果表明 :在淬火 低温回火状态下 ,这种钢的旋转弯曲疲劳极限σ- 1随其微观结构尺寸(原奥氏体晶粒或马氏体束径尺寸 )的减小而提高 ,且有关系式σ- 1=σ0 kd- 1/ 2 .这样 ,就可以通过测量钢的微观结构尺寸来估算其疲劳性能 相似文献