共查询到20条相似文献,搜索用时 15 毫秒
1.
当核函数Ω∈Lq(Sn-1)(1q≤∞)为零阶齐次且满足消失矩条件时,利用权不等式和加权Lebesgue空间上的有界性,分别得到了粗糙核面积积分和Littlewood-Paley g*λ函数在加权Morrey空间Lp,κ(ω)上的弱有界性. 相似文献
2.
建立了满足一定尺寸条件的某些次线性算子在广义Morrey空间L^p,ψ(R^n)(n≥2)上的有界性,从而解决了某些带有Taylor级数余项型的多线性算子在L^p.ψ(R^n)上的连续性问题. 相似文献
3.
本文首次引入了加权λ-中心Morrey空间以及加权λ-中心有界平均振动空间,得到了具有粗糙核的高维Hardy算子交换子在此类空间中有界性.我们的结果推广了Fu,Lu和Zhao的结论. 相似文献
4.
5.
目的研究某些粗糙算子在加权Herz-Morrey空间上的有界性问题。方法泛函分析与调和分析中的方法。结果得到了某些粗糙算子在加权Herz-Morrey空间上的有界性。结论证明在加权Herz-Morrey空间上,粗糙算子在一定条件下必有界。 相似文献
6.
借助于加权Herz空间上的分解理论,利用权函数的性质以及不等式的估计,得到了Littlewood-Paley g函数从加权Herz空间到加权弱Herz空间的有界性。这个结果丰富了Littlewood-Paley算子理论的内容。 相似文献
7.
张丽琴 《淮北煤炭师范学院学报(自然科学版)》2004,25(2):10-14
本文介绍了Herz-Hardy空间及其性质,利用原子分解证明了Littlewood.Paley算子交换子在该空间上的有界性. 相似文献
8.
设μΩ,α为分数型Marcinkiewicz算子,[b,μΩ,α]是由μΩ,α和有界平均振动(BMO)函数b(x)生成的交换子。利用Sharp极大函数估计以及空间分解理论,证明了μΩ,α和[b,μΩ,α]在加权Morrey空间上的有界性质。此外,考虑了μΩ,α在加权Morrey空间上的弱型估计。 相似文献
9.
借助变指标Lebesgue空间上的有界性,利用函数分层分解和实变技巧,得到了参数型粗糙核Marcinkiewicz积分、面积积分和 Littlewood-Paley g*λ函数在极大变指标Herz空间上的有界性。同时也证明了面积积分和Littlewood-Paley g*λ函数高阶交换子的有界性。 相似文献
10.
一类粗糙算子的高阶交换子在加权Herz空间的有界性* 总被引:8,自引:0,他引:8
伍火熊 《北京师范大学学报(自然科学版)》2001,37(3):299-306
讨论了一类由分数次积分算子,分数次最大算子和加权BMO函数生成的高阶交换子Tb,mt和Mb,m,l在加权Herz空间的有界性,在一定条件下证明了Tb,m和Mb,m是从Kap1,到Ka,p2(有界的。 相似文献
11.
利用核函数Ω的性质,考虑了带变量核的分数次积分算子TΩ,α在加权Morrey空间上的有界性,证明了当Ω满足零阶齐次条件与消失距条件时,带变量核的分数次积分TΩ,α是从Lp,k(ωp,ωq)到Lq,kq/p(ωq)的有界算子,从而推广了以往非变量核的相关结果. 相似文献
12.
本文证明了一类带变量核的抛物型Littlewood—Paley算子9Ф与Besov函数b生成的交换子9Ф,b在广义Morrey空间L^ρ,ω(Rn)上的有界性. 相似文献
13.
14.
给出了齐型空间上Littlewood-Paley算子G的定义,证明了当f是BMO函数时,G(f)或者几乎处处等于无穷;或者其BMO范数被f的BMO范数控制. 相似文献
15.
利用带粗糙核的Marcinkiewicz积分算子在LP空间和齐次Morrey-Herz空间M.Kpα,,λq(Rn)上的有界性,证明了它在更广泛的一类空间即加权Morrey-Herz空间M.Kαp,,λq(ω1,ω2)上的有界性. 相似文献
16.
研究了Littlewood—Paley g函数在加权Herz空间上的弱有界性。利用加权Herz空间的分解理论及几个不等式,证明了若ω1,ω2∈A1,当0〈α≤n(1-1/q)时,gφ是Kq^α,p(ω1,ω2)到WKq^α,p(ω1,ω2)上的有界算子,并且当0〈α〈n(1—1/q)时,gφ在加权Herz空间上具有强有界性。此结果丰富了Littlewood—Paley g函数的有界性理论。 相似文献
17.
本文证明了多线性极大函数在加权Morrey空间中的有界性,其中权函数为Lerner等人于2009年定义的多线性矢量权。 相似文献
18.
借助Lp空间上的估计,利用Ap权不等式和函数分解方法,给出多线性奇异积分和有界平均振荡(BMO)函数交换子的振荡及变分算子在加权Morrey空间上的有界性. 相似文献
19.
建立了θ型Calderón-Zygmund算子及其与BMO函数的交换子的Sharp极大函数估计.作为应用,可以得到这些算子在加权Morrey空间上的有界性. 相似文献
20.
借助于Marcinkiewicz积分μΩ的加权L^p有界性的结论,使用经典的不等式估计,并应用加权Campanato空间的性质,本文证明了粗糙核Marcinkiewicz积分在加权Campanato空间的有界性。该结论补充了奇异积分算子的相关理论。 相似文献