首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Walker JR  Corpina RA  Goldberg J 《Nature》2001,412(6847):607-614
The Ku heterodimer (Ku70 and Ku80 subunits) contributes to genomic integrity through its ability to bind DNA double-strand breaks and facilitate repair by the non-homologous end-joining pathway. The crystal structure of the human Ku heterodimer was determined both alone and bound to a 55-nucleotide DNA element at 2.7 and 2.5 A resolution, respectively. Ku70 and Ku80 share a common topology and form a dyad-symmetrical molecule with a preformed ring that encircles duplex DNA. The binding site can cradle two full turns of DNA while encircling only the central 3-4 base pairs (bp). Ku makes no contacts with DNA bases and few with the sugar-phosphate backbone, but it fits sterically to major and minor groove contours so as to position the DNA helix in a defined path through the protein ring. These features seem well designed to structurally support broken DNA ends and to bring the DNA helix into phase across the junction during end processing and ligation.  相似文献   

2.
3.
The mechanisms by which eukaryotic cells sense DNA double-strand breaks (DSBs) in order to initiate checkpoint responses are poorly understood. 53BP1 is a conserved checkpoint protein with properties of a DNA DSB sensor. Here, we solved the structure of the domain of 53BP1 that recruits it to sites of DSBs. This domain consists of two tandem tudor folds with a deep pocket at their interface formed by residues conserved in the budding yeast Rad9 and fission yeast Rhp9/Crb2 orthologues. In vitro, the 53BP1 tandem tudor domain bound histone H3 methylated on Lys 79 using residues that form the walls of the pocket; these residues were also required for recruitment of 53BP1 to DSBs. Suppression of DOT1L, the enzyme that methylates Lys 79 of histone H3, also inhibited recruitment of 53BP1 to DSBs. Because methylation of histone H3 Lys 79 was unaltered in response to DNA damage, we propose that 53BP1 senses DSBs indirectly through changes in higher-order chromatin structure that expose the 53BP1 binding site.  相似文献   

4.
Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing   总被引:2,自引:0,他引:2  
Mimitou EP  Symington LS 《Nature》2008,455(7214):770-774
DNA ends exposed after introduction of double-strand breaks (DSBs) undergo 5'-3' nucleolytic degradation to generate single-stranded DNA, the substrate for binding by the Rad51 protein to initiate homologous recombination. This process is poorly understood in eukaryotes, but several factors have been implicated, including the Mre11 complex (Mre11-Rad50-Xrs2/NBS1), Sae2/CtIP/Ctp1 and Exo1. Here we demonstrate that yeast Exo1 nuclease and Sgs1 helicase function in alternative pathways for DSB processing. Novel, partially resected intermediates accumulate in a double mutant lacking Exo1 and Sgs1, which are poor substrates for homologous recombination. The early processing step that generates partly resected intermediates is dependent on Sae2. When Sae2 is absent, in addition to Exo1 and Sgs1, unprocessed DSBs accumulate and homology-dependent repair fails. These results suggest a two-step mechanism for DSB processing during homologous recombination. First, the Mre11 complex and Sae2 remove a small oligonucleotide(s) from the DNA ends to form an early intermediate. Second, Exo1 and/or Sgs1 rapidly process this intermediate to generate extensive tracts of single-stranded DNA that serve as substrate for Rad51.  相似文献   

5.
A role for Saccharomyces cerevisiae histone H2A in DNA repair   总被引:11,自引:0,他引:11  
Downs JA  Lowndes NF  Jackson SP 《Nature》2000,408(6815):1001-1004
  相似文献   

6.
Nagao K  Adachi Y  Yanagida M 《Nature》2004,430(7003):1044-1048
Sister chromatids are held together by cohesins. At anaphase, separase is activated by degradation of its inhibitory partner, securin. Separase then cleaves cohesins, thus allowing sister chromatid separation. Fission yeast securin (Cut2) has destruction boxes and a separase (Cut1) interaction site in the amino and carboxyl terminus, respectively. Here we show that securin is essential for separase stability and also for proper repair of DNA damaged by ultraviolet, X-ray and gamma-ray irradiation. The cut2(EA2) mutant is defective in the repair of ultraviolet damage lesions, although the DNA damage checkpoint is activated normally. In double mutant analysis of ultraviolet sensitivity, checkpoint kinase chk1 (ref. 9) and excision repair rad13 (ref. 10) mutants were additive with cut2(EA2), whereas recombination repair rhp51 (ref. 11) and cohesin subunit rad21 (ref. 12) mutants were not. Cohesin was hyper-modified on ultraviolet irradiation in a Rad3 kinase-dependent way. Experiments using either mutant cohesin that cannot be cleaved by separase or a protease-dead separase provide evidence that this DNA repair function of securin-separase acts through the cleavage of cohesin. We propose that the securin-separase complex might aid DNA repair by removing local cohesin in interphase cells.  相似文献   

7.
MDC1 is required for the intra-S-phase DNA damage checkpoint   总被引:33,自引:0,他引:33  
MRE11, RAD50 and NBS1 form a highly conserved protein complex (the MRE11 complex) that is involved in the detection, signalling and repair of DNA damage. We identify MDC1 (KIAA0170/NFBD1), a protein that contains a forkhead-associated (FHA) domain and two BRCA1 carboxy-terminal (BRCT) domains, as a binding partner for the MRE11 complex. We show that, in response to ionizing radiation, MDC1 is hyperphosphorylated in an ATM-dependent manner, and rapidly relocalizes to nuclear foci that also contain the MRE11 complex, phosphorylated histone H2AX and 53BP1. Downregulation of MDC1 expression by small interfering RNA yields a radio-resistant DNA synthesis (RDS) phenotype and prevents ionizing radiation-induced focus formation by the MRE11 complex. However, downregulation of MDC1 does not abolish the ionizing radiation-induced phosphorylation of NBS1, CHK2 and SMC1, or the degradation of CDC25A. Furthermore, we show that overexpression of the MDC1 FHA domain interferes with focus formation by MDC1 itself and by the MRE11 complex, and induces an RDS phenotype. These findings reveal that MDC1-mediated focus formation by the MRE11 complex at sites of DNA damage is crucial for the efficient activation of the intra-S-phase checkpoint.  相似文献   

8.
Spinocerebellar ataxia with axonal neuropathy-1 (SCAN1) is a neurodegenerative disease that results from mutation of tyrosyl phosphodiesterase 1 (TDP1). In lower eukaryotes, Tdp1 removes topoisomerase 1 (top1) peptide from DNA termini during the repair of double-strand breaks created by collision of replication forks with top1 cleavage complexes in proliferating cells. Although TDP1 most probably fulfils a similar function in human cells, this role is unlikely to account for the clinical phenotype of SCAN1, which is associated with progressive degeneration of post-mitotic neurons. In addition, this role is redundant in lower eukaryotes, and Tdp1 mutations alone confer little phenotype. Moreover, defects in processing or preventing double-strand breaks during DNA replication are most probably associated with increased genetic instability and cancer, phenotypes not observed in SCAN1 (ref. 8). Here we show that in human cells TDP1 is required for repair of chromosomal single-strand breaks arising independently of DNA replication from abortive top1 activity or oxidative stress. We report that TDP1 is sequestered into multi-protein single-strand break repair (SSBR) complexes by direct interaction with DNA ligase IIIalpha and that these complexes are catalytically inactive in SCAN1 cells. These data identify a defect in SSBR in a neurodegenerative disease, and implicate this process in the maintenance of genetic integrity in post-mitotic neurons.  相似文献   

9.
Double-strand breaks occur during DNA replication and are also induced by ionizing radiation. There are at least two pathways which can repair such breaks: non-homologous end joining and homologous recombination (HR). Although these pathways are essentially independent of one another, it is possible that the proteins Mre11, Rad50 and Xrs2 are involved in both pathways in Saccharomyces cerevisiae. In vertebrate cells, little is known about the exact function of the Mre11-Rad50-Nbs1 complex in the repair of double-strand breaks because Mre11- and Rad50-null mutations are lethal. Here we show that Nbs1 is essential for HR-mediated repair in higher vertebrate cells. The disruption of Nbs1 reduces gene conversion and sister chromatid exchanges, similar to other HR-deficient mutants. In fact, a site-specific double-strand break repair assay showed a notable reduction of HR events following generation of such breaks in Nbs1-disrupted cells. The rare recombinants observed in the Nbs1-disrupted cells were frequently found to have aberrant structures, which possibly arise from unusual crossover events, suggesting that the Nbs1 complex might be required to process recombination intermediates.  相似文献   

10.
R D Johnson  N Liu  M Jasin 《Nature》1999,401(6751):397-399
The repair of DNA double-strand breaks is essential for cells to maintain their genomic integrity. Two major mechanisms are responsible for repairing these breaks in mammalian cells, non-homologous end-joining (NHEJ) and homologous recombination (HR): the importance of the former in mammalian cells is well established, whereas the role of the latter is just emerging. Homologous recombination is presumably promoted by an evolutionarily conserved group of genes termed the Rad52 epistasis group. An essential component of the HR pathway is the strand-exchange protein, known as RecA in bacteria or Rad51 in yeast. Several mammalian genes have been implicated in repair by homologous recombination on the basis of their sequence homology to yeast Rad51: one of these is human XRCC2. Here we show that XRCC2 is essential for the efficient repair of DNA double-strand breaks by homologous recombination between sister chromatids. We find that hamster cells deficient in XRCC2 show more than a 100-fold decrease in HR induced by double-strand breaks compared with the parental cell line. This defect is corrected to almost wild-type levels by transient transfection with a plasmid expressing XRCC2. The repair defect in XRCC2 mutant cells appears to be restricted to recombinational repair because NHEJ is normal. We conclude that XRCC2 is involved in the repair of DNA double-strand breaks by homologous recombination.  相似文献   

11.
Pei H  Zhang L  Luo K  Qin Y  Chesi M  Fei F  Bergsagel PL  Wang L  You Z  Lou Z 《Nature》2011,470(7332):124-128
p53-binding protein 1 (53BP1) is known to be an important mediator of the DNA damage response, with dimethylation of histone H4 lysine 20 (H4K20me2) critical to the recruitment of 53BP1 to double-strand breaks (DSBs). However, it is not clear how 53BP1 is specifically targeted to the sites of DNA damage, as the overall level of H4K20me2 does not seem to increase following DNA damage. It has been proposed that DNA breaks may cause exposure of methylated H4K20 previously buried within the chromosome; however, experimental evidence for such a model is lacking. Here we found that H4K20 methylation actually increases locally upon the induction of DSBs and that methylation of H4K20 at DSBs is mediated by the histone methyltransferase MMSET (also known as NSD2 or WHSC1) in mammals. Downregulation of MMSET significantly decreases H4K20 methylation at DSBs and the subsequent accumulation of 53BP1. Furthermore, we found that the recruitment of MMSET to DSBs requires the γH2AX-MDC1 pathway; specifically, the interaction between the MDC1 BRCT domain and phosphorylated Ser?102 of MMSET. Thus, we propose that a pathway involving γH2AX-MDC1-MMSET regulates the induction of H4K20 methylation on histones around DSBs, which, in turn, facilitates 53BP1 recruitment.  相似文献   

12.
Hayashi K  Yoshida K  Matsui Y 《Nature》2005,438(7066):374-378
  相似文献   

13.
Garcia V  Phelps SE  Gray S  Neale MJ 《Nature》2011,479(7372):241-244
Repair of DNA double-strand breaks (DSBs) by homologous recombination requires resection of 5'-termini to generate 3'-single-strand DNA tails. Key components of this reaction are exonuclease 1 and the bifunctional endo/exonuclease, Mre11 (refs 2-4). Mre11 endonuclease activity is critical when DSB termini are blocked by bound protein--such as by the DNA end-joining complex, topoisomerases or the meiotic transesterase Spo11 (refs 7-13)--but a specific function for the Mre11 3'-5' exonuclease activity has remained elusive. Here we use Saccharomyces cerevisiae to reveal a role for the Mre11 exonuclease during the resection of Spo11-linked 5'-DNA termini in vivo. We show that the residual resection observed in Exo1-mutant cells is dependent on Mre11, and that both exonuclease activities are required for efficient DSB repair. Previous work has indicated that resection traverses unidirectionally. Using a combination of physical assays for 5'-end processing, our results indicate an alternative mechanism involving bidirectional resection. First, Mre11 nicks the strand to be resected up to 300 nucleotides from the 5'-terminus of the DSB--much further away than previously assumed. Second, this nick enables resection in a bidirectional manner, using Exo1 in the 5'-3' direction away from the DSB, and Mre11 in the 3'-5' direction towards the DSB end. Mre11 exonuclease activity also confers resistance to DNA damage in cycling cells, suggesting that Mre11-catalysed resection may be a general feature of various DNA repair pathways.  相似文献   

14.
Among various histones, histone H1 proteins have been appreciated for their multiple functions in diverse biological processes. In addition to being a structural protein in chromatin, H1 proteins also play critical roles in cell cycle, gene expression, and development. Recent studies reveal the possible effects of H1 in some diseases, such as cancer and neurodegenerative diseases. Here, we review different variants of HI, the functions, and post translational modifications of ill variants are also discussed.  相似文献   

15.
Jackson JP  Lindroth AM  Cao X  Jacobsen SE 《Nature》2002,416(6880):556-560
  相似文献   

16.
Gao Y  Katyal S  Lee Y  Zhao J  Rehg JE  Russell HR  McKinnon PJ 《Nature》2011,471(7337):240-244
DNA replication and repair in mammalian cells involves three distinct DNA ligases: ligase I (Lig1), ligase III (Lig3) and ligase IV (Lig4). Lig3 is considered a key ligase during base excision repair because its stability depends upon its nuclear binding partner Xrcc1, a critical factor for this DNA repair pathway. Lig3 is also present in the mitochondria, where its role in mitochondrial DNA (mtDNA) maintenance is independent of Xrcc1 (ref. 4). However, the biological role of Lig3 is unclear as inactivation of murine Lig3 results in early embryonic lethality. Here we report that Lig3 is essential for mtDNA integrity but dispensable for nuclear DNA repair. Inactivation of Lig3 in the mouse nervous system resulted in mtDNA loss leading to profound mitochondrial dysfunction, disruption of cellular homeostasis and incapacitating ataxia. Similarly, inactivation of Lig3 in cardiac muscle resulted in mitochondrial dysfunction and defective heart-pump function leading to heart failure. However, Lig3 inactivation did not result in nuclear DNA repair deficiency, indicating essential DNA repair functions of Xrcc1 can occur in the absence of Lig3. Instead, we found that Lig1 was critical for DNA repair, but acted in a cooperative manner with Lig3. Additionally, Lig3 deficiency did not recapitulate the hallmark features of neural Xrcc1 inactivation such as DNA damage-induced cerebellar interneuron loss, further underscoring functional separation of these DNA repair factors. Therefore, our data reveal that the critical biological role of Lig3 is to maintain mtDNA integrity and not Xrcc1-dependent DNA repair.  相似文献   

17.
The Cdt1 protein is required to license DNA for replication in fission yeast   总被引:18,自引:0,他引:18  
Nishitani H  Lygerou Z  Nishimoto T  Nurse P 《Nature》2000,404(6778):625-628
To maintain genome stability in eukaryotic cells, DNA is licensed for replication only after the cell has completed mitosis, ensuring that DNA synthesis (S phase) occurs once every cell cycle. This licensing control is thought to require the protein Cdc6 (Cdc18 in fission yeast) as a mediator for association of minichromosome maintenance (MCM) proteins with chromatin. The control is overridden in fission yeast by overexpressing Cdc18 (ref. 11) which leads to continued DNA synthesis in the absence of mitosis. Other factors acting in this control have been postulated and we have used a re-replication assay to identify Cdt1 (ref. 14) as one such factor. Cdt1 cooperates with Cdc18 to promote DNA replication, interacts with Cdc18, is located in the nucleus, and its concentration peaks as cells finish mitosis and proceed to S phase. Both Cdc18 and Cdt1 are required to load the MCM protein Cdc21 onto chromatin at the end of mitosis and this is necessary to initiate DNA replication. Genes related to Cdt1 have been found in Metazoa and plants (A. Whitaker, I. Roysman and T. Orr-Weaver, personal communication), suggesting that the cooperation of Cdc6/Cdc18 with Cdt1 to load MCM proteins onto chromatin may be a generally conserved feature of DNA licensing in eukaryotes.  相似文献   

18.
19.
L Multigner  J Gagnon  A Van Dorsselaer  D Job 《Nature》1992,360(6399):33-39
Complex microtubule assemblies are essential components of eukaryotic cilia and flagella. They are extremely stable and are not affected by agents that normally induce polymer disassembly. The molecular basis of this microtubular stability is unknown, and it is not related to any feature of the constitutive tubulin. In sea urchin sperm flagella, axonemal microtubules are found to be stabilized by a protein identical to histone H1, a result that defines a new role for this histone and provides evidence for a concerted evolution of chromatin and microtubular structures.  相似文献   

20.
A nucleosomal core particle is composed of two each of histones H2A, H2B, H3 and H4 located inside the particle with approximately 47 base pairs (bp) of DNA wrapped around the octamer in about 1.8 turns of a left-handed superhelix. The path of the superhelix is not smooth; the DNA is sharply bent, or kinked, at positions symmetrically disposed at a distance of about one and four double-helical turns in both directions from the nucleosomal dyad axis (designated as sites +/- 1 and +/- 4 respectively). This non-uniform bending is considered archetypal to other DNA-protein complexes, but its mechanism is not clear (reviewed in ref. 4). DNA-histone chemical cross-linking within the core particle has revealed strong binding of each of the two histone H4 molecules to DNA at a distance of 1.5 helical turns either side of the nucleosomal dyad axis (sites +/- 1.5). In each of these sites, a single flexible domain of H4 was previously shown to contact three points, at about nucleotides 55 and 65 on one strand and nucleotide 88 on the complementary strand, numbering from the 5' terminus of each 147-base strand; these three locations are closely juxtaposed across the highly compressed minor and major grooves (Fig. 1). Here we report that the amino-acid residue of histone H4 cross-linked at the 1.5 site is histidine-18, embedded in a highly basic cluster Lys-Arg-His-Arg-Lys-Val-Leu-Arg which is probably involved in the sharp bending of the DNA double helix at the +/- 1 sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号