首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 705 毫秒
1.
Protochordate amphioxus is an extant invertebrate regarded quite recently as a basal chordate. It has a vertebrate-like body plan including a circulation system with an organization similar to that of vertebrates. However, amphioxus is less complex than vertebrates for having a genome uncomplicated by extensive genomic duplication, and lacking lymphoid organs and free circulating blood cells. Recent studies on immunity have demonstrated the presence in amphioxus of both the constituent elements of key molecules involved in adaptive immunity such as proto-major histocompatibility complex (proto-MHC), V region-containing chitin-binding protein (VCBP) and V and C domain-bearing protein (VCP), and the complement system operating via the alternative and lectin pathways resembling those seen in vertebrates. In addition, the acute phase response profile in amphioxus has been shown to be similar to that observed in vertebrates. These findings together with the relative structural and genomic simplicity make amphioxus an ideal organism for gaining insights into the origin and evolution of the vertebrate immune system, especially adaptive immunity, and the composition and mechanisms of the vertebrate innate immunity.  相似文献   

2.
Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests approximately 900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.  相似文献   

3.
Histocompatibility--the ability of an organism to distinguish its own cells and tissue from those of another--is a universal phenomenon in the Metazoa. In vertebrates, histocompatibility is a function of the immune system controlled by a highly polymorphic major histocompatibility complex (MHC), which encodes proteins that target foreign molecules for immune cell recognition. The association of the MHC and immune function suggests an evolutionary relationship between metazoan histocompatibility and the origins of vertebrate immunity. However, the MHC of vertebrates is the only functionally characterized histocompatibility system; the mechanisms underlying this process in non-vertebrates are unknown. A primitive chordate, the ascidian Botryllus schlosseri, also undergoes a histocompatibility reaction controlled by a highly polymorphic locus. Here we describe the isolation of a candidate gene encoding an immunoglobulin superfamily member that, by itself, predicts the outcome of histocompatibility reactions. This is the first non-vertebrate histocompatibility gene described, and may provide insights into the evolution of vertebrate adaptive immunity.  相似文献   

4.
Delsuc F  Brinkmann H  Chourrout D  Philippe H 《Nature》2006,439(7079):965-968
Tunicates or urochordates (appendicularians, salps and sea squirts), cephalochordates (lancelets) and vertebrates (including lamprey and hagfish) constitute the three extant groups of chordate animals. Traditionally, cephalochordates are considered as the closest living relatives of vertebrates, with tunicates representing the earliest chordate lineage. This view is mainly justified by overall morphological similarities and an apparently increased complexity in cephalochordates and vertebrates relative to tunicates. Despite their critical importance for understanding the origins of vertebrates, phylogenetic studies of chordate relationships have provided equivocal results. Taking advantage of the genome sequencing of the appendicularian Oikopleura dioica, we assembled a phylogenomic data set of 146 nuclear genes (33,800 unambiguously aligned amino acids) from 14 deuterostomes and 24 other slowly evolving species as an outgroup. Here we show that phylogenetic analyses of this data set provide compelling evidence that tunicates, and not cephalochordates, represent the closest living relatives of vertebrates. Chordate monophyly remains uncertain because cephalochordates, albeit with a non-significant statistical support, surprisingly grouped with echinoderms, a hypothesis that needs to be tested with additional data. This new phylogenetic scheme prompts a reappraisal of both morphological and palaeontological data and has important implications for the interpretation of developmental and genomic studies in which tunicates and cephalochordates are used as model animals.  相似文献   

5.
The medaka draft genome and insights into vertebrate genome evolution   总被引:3,自引:0,他引:3  
Teleosts comprise more than half of all vertebrate species and have adapted to a variety of marine and freshwater habitats. Their genome evolution and diversification are important subjects for the understanding of vertebrate evolution. Although draft genome sequences of two pufferfishes have been published, analysis of more fish genomes is desirable. Here we report a high-quality draft genome sequence of a small egg-laying freshwater teleost, medaka (Oryzias latipes). Medaka is native to East Asia and an excellent model system for a wide range of biology, including ecotoxicology, carcinogenesis, sex determination and developmental genetics. In the assembled medaka genome (700 megabases), which is less than half of the zebrafish genome, we predicted 20,141 genes, including approximately 2,900 new genes, using 5'-end serial analysis of gene expression tag information. We found single nucleotide polymorphisms (SNPs) at an average rate of 3.42% between the two inbred strains derived from two regional populations; this is the highest SNP rate seen in any vertebrate species. Analyses based on the dense SNP information show a strict genetic separation of 4 million years (Myr) between the two populations, and suggest that differential selective pressures acted on specific gene categories. Four-way comparisons with the human, pufferfish (Tetraodon), zebrafish and medaka genomes revealed that eight major interchromosomal rearrangements took place in a remarkably short period of approximately 50 Myr after the whole-genome duplication event in the teleost ancestor and afterwards, intriguingly, the medaka genome preserved its ancestral karyotype for more than 300 Myr.  相似文献   

6.
Neuroectodermal signalling centres induce and pattern many novel vertebrate brain structures but are absent, or divergent, in invertebrate chordates. This has led to the idea that signalling-centre genetic programs were first assembled in stem vertebrates and potentially drove morphological innovations of the brain. However, this scenario presumes that extant cephalochordates accurately represent ancestral chordate characters, which has not been tested using close chordate outgroups. Here we report that genetic programs homologous to three vertebrate signalling centres-the anterior neural ridge, zona limitans intrathalamica and isthmic organizer-are present in the hemichordate Saccoglossus kowalevskii. Fgf8/17/18 (a single gene homologous to vertebrate Fgf8, Fgf17 and Fgf18), sfrp1/5, hh and wnt1 are expressed in vertebrate-like arrangements in hemichordate ectoderm, and homologous genetic mechanisms regulate ectodermal patterning in both animals. We propose that these genetic programs were components of an unexpectedly complex, ancient genetic regulatory scaffold for deuterostome body patterning that degenerated in amphioxus and ascidians, but was retained to pattern divergent structures in hemichordates and vertebrates.  相似文献   

7.
SRY基因在部分动物类群系统进化中保守性研究   总被引:2,自引:0,他引:2  
用特异于人 HMG- box区域的一对引物 ,对脊推动物 5个纲 10个物种及 2种无脊推动物的基因组 DNA进行 PCR扩增 ,并以 dig标记的人 SRY基因为探针 ,与扩增产物进行 Southern杂交 ,结果表明 :在这 12个物种中都存在 SRY基因的同源序列 ,无脊推动物克氏螯虾及背角无齿蚌杂交中显色较慢 ,表明 SRY基因在系统进化中具有高度的保守性且同源程度与物种在进化上的地位有关  相似文献   

8.
Finishing the euchromatic sequence of the human genome   总被引:3,自引:0,他引:3  
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers approximately 99% of the euchromatic genome and is accurate to an error rate of approximately 1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human genome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead.  相似文献   

9.
The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.  相似文献   

10.
The organizer of the vertebrate gastrula is an important signalling centre that induces and patterns dorsal axial structures. Although a topic of long-standing interest, the evolutionary origin of the organizer remains unclear. Here we show that the gastrula of the cephalochordate amphioxus expresses dorsal/ventral (D/V) patterning genes (for example, bone morphogenetic proteins (BMPs), Nodal and their antagonists) in patterns reminiscent of those of their vertebrate orthlogues, and that amphioxus embryos, like those of vertebrates, are ventralized by exogenous BMP protein. In addition, Wnt-antagonists (for example, Dkks and sFRP2-like) are expressed anteriorly, whereas Wnt genes themselves are expressed posteriorly, consistent with a role for Wnt signalling in anterior/posterior (A/P) patterning. These results suggest evolutionary conservation of the mechanisms for both D/V and A/P patterning of the early gastrula. In light of recent phylogenetic analyses placing cephalochordates basally in the chordate lineage, we propose that separate signalling centres for patterning the D/V and A/P axes may be an ancestral chordate character.  相似文献   

11.
Ancestry of unisexual salamanders.   总被引:9,自引:0,他引:9  
S B Hedges  J P Bogart  L R Maxson 《Nature》1992,356(6371):708-710
In eastern North America there are populations of all-female salamanders that incorporate the nuclear genomes of two or three of four sympatric bisexual species. The hybrids can be diploid, triploid, tetraploid or pentaploid, and 18 different combinations have been reported. All hybrids require sperm from a sympatric male of one of the bisexual species to reproduce, but the sperm may or may not be incorporated in the egg. Some of the hybrids are believed to represent separate, clonal species, but little is known of the origin of this hybrid complex. Vertebrate mitochondrial DNA is inherited maternally, allowing identification of the female parent that gave rise to hybrid lineages. A portion of the cytochrome b gene was sequenced from diploid and triploid hybrids that represent combinations of all four species. Nearly all hybrids had a similar mitochondrial genome sequence, independent of nuclear genome composition and ploidy, and the sequence was distinct from that of any of the four bisexual species. The hybrids maintain a mitochondrial lineage that has evolved independently of their nuclear genome and represent the most ancient known unisexual vertebrate lineage.  相似文献   

12.
Deuterostomes comprise vertebrates, the related invertebrate chordates (tunicates and cephalochordates) and three other invertebrate taxa: hemichordates, echinoderms and Xenoturbella. The relationships between invertebrate and vertebrate deuterostomes are clearly important for understanding our own distant origins. Recent phylogenetic studies of chordate classes and a sea urchin have indicated that urochordates might be the closest invertebrate sister group of vertebrates, rather than cephalochordates, as traditionally believed. More remarkable is the suggestion that cephalochordates are closer to echinoderms than to vertebrates and urochordates, meaning that chordates are paraphyletic. To study the relationships among all deuterostome groups, we have assembled an alignment of more than 35,000 homologous amino acids, including new data from a hemichordate, starfish and Xenoturbella. We have also sequenced the mitochondrial genome of Xenoturbella. We support the clades Olfactores (urochordates and vertebrates) and Ambulacraria (hemichordates and echinoderms). Analyses using our new data, however, do not support a cephalochordate and echinoderm grouping and we conclude that chordates are monophyletic. Finally, nuclear and mitochondrial data place Xenoturbella as the sister group of the two ambulacrarian phyla. As such, Xenoturbella is shown to be an independent phylum, Xenoturbellida, bringing the number of living deuterostome phyla to four.  相似文献   

13.
We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.  相似文献   

14.
Microsporidia are obligate intracellular parasites infesting many animal groups. Lacking mitochondria and peroxysomes, these unicellular eukaryotes were first considered a deeply branching protist lineage that diverged before the endosymbiotic event that led to mitochondria. The discovery of a gene for a mitochondrial-type chaperone combined with molecular phylogenetic data later implied that microsporidia are atypical fungi that lost mitochondria during evolution. Here we report the DNA sequences of the 11 chromosomes of the approximately 2.9-megabase (Mb) genome of Encephalitozoon cuniculi (1,997 potential protein-coding genes). Genome compaction is reflected by reduced intergenic spacers and by the shortness of most putative proteins relative to their eukaryote orthologues. The strong host dependence is illustrated by the lack of genes for some biosynthetic pathways and for the tricarboxylic acid cycle. Phylogenetic analysis lends substantial credit to the fungal affiliation of microsporidia. Because the E. cuniculi genome contains genes related to some mitochondrial functions (for example, Fe-S cluster assembly), we hypothesize that microsporidia have retained a mitochondrion-derived organelle.  相似文献   

15.
Mining the draft human genome   总被引:7,自引:0,他引:7  
Birney E  Bateman A  Clamp ME  Hubbard TJ 《Nature》2001,409(6822):827-828
Now that the draft human genome sequence is available, everyone wants to be able to use it. However, we have perhaps become complacent about our ability to turn new genomes into lists of genes. The higher volume of data associated with a larger genome is accompanied by a much greater increase in complexity. We need to appreciate both the scale of the challenge of vertebrate genome analysis and the limitations of current gene prediction methods and understanding.  相似文献   

16.
Organ CL  Shedlock AM  Meade A  Pagel M  Edwards SV 《Nature》2007,446(7132):180-184
Avian genomes are small and streamlined compared with those of other amniotes by virtue of having fewer repetitive elements and less non-coding DNA. This condition has been suggested to represent a key adaptation for flight in birds, by reducing the metabolic costs associated with having large genome and cell sizes. However, the evolution of genome architecture in birds, or any other lineage, is difficult to study because genomic information is often absent for long-extinct relatives. Here we use a novel bayesian comparative method to show that bone-cell size correlates well with genome size in extant vertebrates, and hence use this relationship to estimate the genome sizes of 31 species of extinct dinosaur, including several species of extinct birds. Our results indicate that the small genomes typically associated with avian flight evolved in the saurischian dinosaur lineage between 230 and 250 million years ago, long before this lineage gave rise to the first birds. By comparison, ornithischian dinosaurs are inferred to have had much larger genomes, which were probably typical for ancestral Dinosauria. Using comparative genomic data, we estimate that genome-wide interspersed mobile elements, a class of repetitive DNA, comprised 5-12% of the total genome size in the saurischian dinosaur lineage, but was 7-19% of total genome size in ornithischian dinosaurs, suggesting that repetitive elements became less active in the saurischian lineage. These genomic characteristics should be added to the list of attributes previously considered avian but now thought to have arisen in non-avian dinosaurs, such as feathers, pulmonary innovations, and parental care and nesting.  相似文献   

17.
Widespread horizontal transfer of mitochondrial genes in flowering plants   总被引:1,自引:0,他引:1  
Bergthorsson U  Adams KL  Thomason B  Palmer JD 《Nature》2003,424(6945):197-201
Horizontal gene transfer--the exchange of genes across mating barriers--is recognized as a major force in bacterial evolution. However, in eukaryotes it is prevalent only in certain phagotrophic protists and limited largely to the ancient acquisition of bacterial genes. Although the human genome was initially reported to contain over 100 genes acquired during vertebrate evolution from bacteria, this claim was immediately and repeatedly rebutted. Moreover, horizontal transfer is unknown within the evolution of animals, plants and fungi except in the special context of mobile genetic elements. Here we show, however, that standard mitochondrial genes, encoding ribosomal and respiratory proteins, are subject to evolutionarily frequent horizontal transfer between distantly related flowering plants. These transfers have created a variety of genomic outcomes, including gene duplication, recapture of genes lost through transfer to the nucleus, and chimaeric, half-monocot, half-dicot genes. These results imply the existence of mechanisms for the delivery of DNA between unrelated plants, indicate that horizontal transfer is also a force in plant nuclear genomes, and are discussed in the contexts of plant molecular phylogeny and genetically modified plants.  相似文献   

18.
Tunicate embryos and larvae have small cell numbers and simple anatomical features in comparison with other chordates, including vertebrates. Although they branch near the base of chordate phylogenetic trees, their degree of divergence from the common chordate ancestor remains difficult to evaluate. Here we show that the tunicate Oikopleura dioica has a complement of nine Hox genes in which all central genes are lacking but a full vertebrate-like set of posterior genes is present. In contrast to all bilaterians studied so far, Hox genes are not clustered in the Oikopleura genome. Their expression occurs mostly in the tail, with some tissue preference, and a strong partition of expression domains in the nerve cord, in the notochord and in the muscle. In each tissue of the tail, the anteroposterior order of Hox gene expression evokes spatial collinearity, with several alterations. We propose a relationship between the Hox cluster breakdown, the separation of Hox expression domains, and a transition to a determinative mode of development.  相似文献   

19.
The comparison of Hox genes between vertebrates and their closest invertebrate relatives (amphioxus and ascidia) highlights two derived features of Hox genes in vertebrates: duplication of the Hox gene cluster, and an elaboration of Hox expression patterns and roles compared with non-vertebrate chordates. We have investigated how new expression domains and their associated developmental functions evolved, by testing the cis-regulatory activity of genomic DNA fragments from the cephalochordate amphioxus Hox cluster in transgenic mouse and chick embryos. Here we present evidence for the conservation of cis-regulatory mechanisms controlling gene expression in the neural tube for half a billion years of evolution, including a dependence on retinoic acid signalling. We also identify amphioxus Hox gene regulatory elements that drive spatially localized expression in vertebrate neural crest cells, in derivatives of neurogenic placodes and in branchial arches, despite the fact that cephalochordates lack both neural crest and neurogenic placodes. This implies an elaboration of cis-regulatory elements in the Hox gene cluster of vertebrate ancestors during the evolution of craniofacial patterning.  相似文献   

20.
MinD is a ubiquitous ATPase that plays a crucial role in selection of the division site in eubacteria, chloroplasts, and probably Archaea. In four green algae, Mesostigma viride, Nephroselmis olivacea, Chlorella vulgaris and Prototheca wickerhamii, MinD homologues are encoded in the plastid genome. However, in Arabidopsis, MinD is a nucleus-encoded, chloroplast-targeted protein involved in chloro- plast division, which suggests that MinD has been transferred to the nucleus in higher land plants. Yet the lateral gene transfer (LGT) of MinD from plastid to nucleus during plastid evolution remains poorly understood. Here, we identified a nucleus-encoded MinD homologue from unicellular green alga Chlamydomonas reinhardtii, a basal species in the green plant lineage. Overexpression of CrMinD in wild type E. coli inhibited cell division and resulted in the filamentous cell formation, clearly demon- strated the conservation of the MinD protein during the evolution of photosynthetic eukaryotes. The transient expression of CrMinD-egfp confirmed the role of CrMinD protein in the regulation of plastid division. Searching all the published plastid genomic sequences of land plants, no MinD homologues were found, which suggests that the transfer of MinD from plastid to nucleus might have occurred be- fore the evolution of land plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号