首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
D Vidovi?  M Rogli?  K McKune  S Guerder  C MacKay  Z Dembi? 《Nature》1989,340(6235):646-650
Distinct T-lymphocyte subsets recognize antigens in conjunction with different classes of major histocompatibility complex (MHC) glycoproteins using the T-cell receptor (TCR), a disulphide-linked heterodimer associated with the CD3 complex on the cell surface. In general, class I and class II MHC products provide a context for the recognition of foreign antigens by CD8+ and CD4+ T cells, respectively. This recognition seems to be largely dependent on alpha beta TCR heterodimers, whereas the function of the second gamma delta TCR, present on a minor subpopulation of cells, is still unknown. In the mouse, the existence of six cell-surface MHC class I products (K, D, L, Qa-1, Qa-2 and Tla) has been firmly established by serological, biochemical and genetic evidence. So far, only the most polymorphic of them, K, D and L ('classical' class I) have been reported as restriction elements for T-cell recognition of foreign antigens. The function of the relatively invariant Qa and Tla molecules remains unknown. We have made a T-helper cell hybridoma clone (DGT3) that recognizes synthetic copolymer poly(Glu50Tyr50) in the context of Qa-1 cell surface product, and has a CD4-CD8- phenotype. Our studies indicate that DGT3 cells express the gamma delta TCR on the cell surface, implicating its role in Qa-1-restricted antigen recognition. This is the first evidence that T cells can recognize foreign antigen in association with self Qa product, confirming that Qa molecules not only topologically, but also functionally, belong to the MHC.  相似文献   

2.
HLA-restricted recognition of viral antigens in HLA transgenic mice   总被引:2,自引:0,他引:2  
F Kievits  P Ivanyi  P Krimpenfort  A Berns  H L Ploegh 《Nature》1987,329(6138):447-449
Cytotoxic T lymphocytes (CTL) recognize antigen in the context of the class-I products of the major histocompatibility complex (MHC). The extensive polymorphism of class-I molecules is thought to be linked to their capacity to present a large variety of foreign antigens. Whether a single T-cell receptor (TCR) recognizes two separate epitopes (the foreign antigen and an epitope on MHC molecules), or a single epitope resulting from the combination of a foreign antigen and an MHC molecule, has not yet been resolved. In view of the differences between species in primary structure of histocompatibility antigens, it might be predicted that the TCR repertoire would evolve in concert with the diversity of MHC antigens. The mouse and human TCR repertoire would be optimally adapted to engage in productive interactions only with mouse (H-2) and human (HLA) MHC antigens respectively, especially if the more conserved features of histocompatibility antigens, in addition to foreign antigen, were seen by the TCR. Alternatively, only the most variable segments of MHC antigens might be engaged in antigen presentation and thus in interaction with the TCR. In that case, interaction between MHC plus antigen and the TCR might not necessarily be limited by species-specific features. By analysis of the T-cell response against virus-infected cells in HLA-B27/human beta 2-microglobulin double transgenic mice, we report here that the mouse T-cell repertoire is perfectly capable of using the human HLA-B27 antigen as a restriction element.  相似文献   

3.
J G Guillet  M Z Lai  T J Briner  J A Smith  M L Gefter 《Nature》1986,324(6094):260-262
T lymphocytes require a foreign antigen to be presented on a cell surface in association with a self-transplantation antigen before they can recognize it effectively. This phenomenon is known as major histocompatibility complex (MHC) restriction. It is not clear how an incalculably large number of foreign proteins form unique complexes with a very limited number of MHC molecules. We studied the recognition properties of T cells specific for a peptide derived from bacteriophage lambda cI protein. Analogues of this peptide, as well as peptides derived from other unrelated antigens which can be presented in the context of the same MHC molecule, can competitively inhibit activation of these T cells by the cI peptide. Furthermore, these unrelated antigens can stimulate cI-specific T cells if certain specific amino-acid residues are replaced. Here we suggest a model in which all antigens give rise to peptides that can bind to the same site on the MHC molecule. T-cell recognition of this site (which is presumed to be polymorphic) with or without antigen bound can explain self-selection in the thymus and MHC restriction.  相似文献   

4.
Positive selection of CD4+ thymocytes controlled by MHC class II gene products   总被引:20,自引:0,他引:20  
The mature T-cell antigen receptor repertoire is characterized by lack of reactivity to self-components as well as by preferential reactivity to foreign antigens in the context of polymorphic self-proteins encoded within the major histocompatibility complex. Whereas the former characteristic (referred to as negative selection or tolerance) is associated with intrathymic deletion of T cells expressing T-cell antigen receptor beta-chain variable (V beta) domains, which confer a preferential reactivity to self antigens, the existence of the latter (referred to as positive selection or MHC restriction) has so far only been inferred indirectly from functional studies. We show here that intrathymic deletion of V+beta 6 T cells (reactive with a self-antigen encoded by the Mlsa locus) is controlled by polymorphic MHC class II determinants. Furthermore, in mice lacking expression of Mlsa, the same class II MHC loci control the frequency of occurrence of V+beta 6 cells among mature CD4+ T lymphocytes. These data are direct evidence for positive selection by MHC determinants in the thymus in unmanipulated animals.  相似文献   

5.
A Winoto  J L Urban  N C Lan  J Goverman  L Hood  D Hansburg 《Nature》1986,324(6098):679-682
The T-cell receptor is a cell surface heterodimer consisting of an alpha and a beta chain that binds foreign antigen in the context of a cell surface molecule encoded by the major histocompatibility complex (MHC), thus restricting the T-cell response to the surface of antigen presenting cells. The variable (V) domain of the receptor binds antigen and MHC molecules and is composed of distinct regions encoded by separate gene elements--variable (V alpha and V beta), diversity (D beta) and joining (J alpha and J beta)--rearranged and joined during T-cell differentiation to generate contiguous V alpha and V beta genes. T-helper cells, which facilitate T and B cell responses, bind antigen in the context of a class II MHC molecule. The helper T-cell response to cytochrome c in mice is a well-defined model for studying the T-cell response to restricted antigen and MHC determinants. Only mice expressing certain class II molecules can respond to this antigen (Ek alpha Ek beta, Ek alpha Eb beta, Ev alpha Ev beta and Ek alpha Es beta). Most T cells appear to recognize the C-terminal peptide of cytochrome c (residues 81-104 in pigeon cytochrome c). We have raised helper T cells to pigeon cytochrome c or its C-terminal peptide analogues in four different MHC congenic strains of mice encoding each of the four responding class II molecules. We have isolated and sequenced seven V alpha genes and six V beta genes and analysed seven additional helper T cells by Northern blot to compare the structure of the V alpha and V beta gene segments with their antigen and MHC specificities. We have added five examples taken from the literature. These data show that a single V alpha gene segment is responsible for a large part of the response of mice to cytochrome c but there is no simple correlation of MHC restriction with gene segment use.  相似文献   

6.
Differentiation of bone marrow derived precursors into mature T cells takes place in the thymus. During differentiation, T cells develop the receptor repertoire which allows them to recognize antigen in the context of self major histocompatibility complex (MHC) molecules. Mature T helper cells (mostly CD4+ CD8-) recognize antigen in the context of class II MHC molecules, whereas cytotoxic T cells (mostly CD4-CD8+) recognize antigen in the context of class I MHC determinants. Thymic MHC-encoded determinants greatly influence the selection of the T-cell receptor repertoire. In addition to positive selection, a negative selection to eliminate self-reactive T-cell clones is thought to occur in the thymus, but how this 'education' occurs is not well understood. It has been suggested that during differentiation an interaction between the T-cell receptor (TCR) and MHC-encoded determinants occurs, leading to the selection of an MHC-restricted receptor repertoire. In support of this hypothesis, class-II-specific, CD4+ CD8- helper T cells fail to develop in mice neonatally treated with anti-class II monoclonal antibody (mAb). As CD4-CD8+ cells differ from the CD4+ CD8- lineage (in function, MHC-restriction specificity and perhaps site of education) we examined whether interactions with MHC determinants are also necessary for the development of class-I-specific T cells. Here we show that mice chronically treated with anti-class I mAb from birth lack CD4-CD8+ cells and cytotoxic T-cell precursors, indicating that most CD4-CD8+ T cells need interaction with class I MHC molecules during differentiation.  相似文献   

7.
Thymic selection process induced by hybrid antibodies   总被引:2,自引:0,他引:2  
F Zepp  U D Staerz 《Nature》1988,336(6198):473-475
Thymus-derived (T) lymphocytes using the alpha beta T-cell antigen receptor (TCR) recognize fragmented antigen in conjunction with surface molecules encoded by genes of the major histocompatibility complex (MHC). Peripheral T lymphocytes preferentially see antigen presented by self rather than by foreign MHC molecules, and autoreactive T lymphocytes are deleted. Thus, the peripheral T-lymphocyte repertoire is skewed towards recognition of antigen in the context of self-MHC and towards tolerance to self-antigens. During T-lymphocyte development in the thymus, this repertoire is formed by the interaction of TCR with MHC molecules resulting in positive and negative selection phenomena. Hybrid antibodies (HAbs) that carry binding sites to the TCR and to a surface marker on another cell can engage all T lymphocytes regardless of their specificity. It should be possible to mimic selection processes in normal animals with HAb that specifically link members of a TCR family to MHC molecules on the thymic stroma. We have probed T-lymphocyte development with HAbs linking V beta 8-positive TCR to either class I or class II MHC products in thymic organ culture. Thymocytes exposed to either HAb in an early stage of maturation respond with a significant increase in the frequency of V beta 8-carrying cells. At a later stage of development V beta 8-positive thymocytes are depleted. These results illustrate the succession of positive and negative selection in the developing thymus of normal mice.  相似文献   

8.
P Walden  Z A Nagy  J Klein 《Nature》1985,315(6017):327-329
Regulatory (helper and suppressor) T lymphocytes become activated only when foreign antigen is presented to them on the surface of antigen-presenting cells (APC), together with class II major histocompatibility complex (MHC) molecules (heterodimers of polypeptides of 28,000 and 35,000 relative molecular mass). Once activated by a certain foreign antigen--MHC combination, T cells react to the same antigen only in combination with the same MHC molecule, a phenomenon termed MHC restriction of T-cell recognition (reviewed in refs 1,5). Studies of the mechanisms involved in antigen presentation and MHC restriction have been hampered mainly by the virtual impossibility of inducing T-cell responses in the absence of APC. We describe here the production of synthetic lipid vesicles with inserted class II MHC molecules and a protein antigen coupled covalently to the lipid. These liposomes are shown to stimulate cloned helper T cells and T-cell hybridomas in an antigen-specific, MHC-restricted manner in the absence of APC. Thus, the recognition of foreign antigen together with class II MHC molecules seems to be the only signal required for the activation of antigen-primed regulatory T cells. Furthermore, 'processing' of antigen by APC is not essential for its recognition by T cells.  相似文献   

9.
K Saizawa  J Rojo  C A Janeway 《Nature》1987,328(6127):260-263
CD4 is a molecule expressed on the surface of T lymphocytes which recognize foreign protein antigens in the context of class II major histocompatibility complex (MHC) molecules. Recognition of antigen:class II MHC complexes by CD4+ T cells can be inhibited by anti-CD4 (ref. 3). Nevertheless, specific recognition of the antigen:Ia complex is clearly a function of the T-cell receptor, which is composed of CD3 and the variable polypeptides alpha and beta. Thus, it has been proposed that CD4 serves an accessory function in the interaction of CD4+ T cells and Ia-bearing antigen-presenting cells by binding to non-polymorphic portions of class II MHC molecules and stabilizing the cell interaction. Based on our observation that anti-CD4 could inhibit activation of a cloned line of CD4+ T cells by antibodies directed at a particular epitope on the variable region of the T-cell receptor, we have recently proposed that CD4 is actually part of the T-cell antigen recognition complex, physically associated with CD3:alpha:beta. But numerous studies showing that CD3 and CD4 are not stably associated on the T-cell surface would appear to contradict this model. Here we show that anti-T-cell-receptor antibodies can co-modulate expression of the T-cell receptor and CD4, and that the monovalent Fab fragment of such an anti-T-cell-receptor antibody can, in conjunction with bivalent anti-CD4 antibody, generate an activating signal for the T cell. These findings provide further evidence for a physical association of the T-cell receptor complex and CD4.  相似文献   

10.
P Kisielow  H S Teh  H Blüthmann  H von Boehmer 《Nature》1988,335(6192):730-733
Thymus-derived lymphocytes (T cells) recognize antigen in the context of class I or class II molecules encoded by the major histocompatibility complex (MHC) by virtue of the heterodimeric alpha beta T-cell receptor (TCR). CD4 and CD8 molecules expressed on the surface of T cells bind to nonpolymorphic portions of class II and class I MHC molecules and assist the TCR in binding and possibly in signalling. The analysis of T-cell development in TCR transgenic mice has shown that the CD4/CD8 phenotype of T cells is determined by the interaction of the alpha beta TCR expressed on immature CD4+8+ thymocytes with polymorphic domains of thymic MHC molecules in the absence of nominal antigen. Here we provide direct evidence that positive selection of antigen-specific, class I MHC-restricted CD4-8+ T cells in the thymus requires the specific interaction of the alpha beta TCR with the restricting class I MHC molecule.  相似文献   

11.
N Suciu-Foca  E Reed  P Rubinstein  W MacKenzie  A K Ng  D W King 《Nature》1985,318(6045):465-467
T lymphocytes possessing helper function produce soluble factors that greatly augment B-cell proliferation and differentiation into antibody-secreting cells. In humans the subset of T lymphocytes bearing the T4 surface antigen comprises most of the cells that display helper activity and recognize class II antigens of the major histocompatibility complex (MHC), while the subset bearing the T8 antigen comprises T cells recognizing class I MHC antigens and exhibiting cytotoxic or suppressor function. Monoclonal antibodies to T4 or T8 greatly inhibit the cognitive and effector function of cells with the corresponding phenotype. This function/phenotype correlation is not absolute, however, for there are many examples of T8-positive clones that recognize MHC class II antigens and have helper activity, as well as of T4-positive clones with suppressor or cytotoxic function. Recently a family of cell-surface neoantigens, which might be relevant to T-cell function and which are present on activated but not on resting T lymphocytes, has been identified in mouse and humans using monoclonal antibodies. Some of these antibodies block the cytolytic activity of alloreactive T-cell clones, suggesting the possible involvement of such molecules in the activation of cytotoxic T-cell clones or in the lytic process itself. We now describe a similar late-differentiation antigen (LDA1) that is expressed by human T lymphocytes only following activation and is recognized by a monoclonal antibody that inhibits the antibody-inducing helper function of T lymphocytes.  相似文献   

12.
It is generally accepted that T lymphocytes recognize antigens in the context of molecules encoded by genes in the major histocompatibility complex (MHC). MHC class II-restricted T cells usually recognize degraded or denatured rather than native forms of antigen on the surface of class II-bearing antigen presenting cells. It has recently been shown that short synthetic peptides corresponding to mapped antigenic sites of the influenza nucleoprotein (NP) can render uninfected target cells susceptible to lysis by NP-specific class I-restricted cytolytic T cells (CTL). These and earlier experiments that showed specific recognition of NP deletion mutant transfectants suggest that class I-restricted recognition might also involve processed antigenic fragments. One important issue arising from these studies is whether the model applies not only to viral proteins that are expressed internally (such as NP) but also to antigens normally expressed as integral membrane proteins at the cell surface. We have recently isolated class I-restricted mouse CTL clones that recognize class I gene products of the human MHC (HLA) as antigens in mouse cell HLA-transfectants. Here we show that these anti-HLA CTL can lyse HLA-negative syngeneic mouse cells in the presence of a synthetic HLA peptide. These results suggest that the model applies generally.  相似文献   

13.
Sequence analysis of peptides bound to MHC class II molecules.   总被引:38,自引:0,他引:38  
CD4 T cells recognize peptide fragments of foreign proteins bound to self class II molecules of the major histocompatibility complex (MHC). Naturally processed peptide fragments bound to MHC class II molecules are peptides of 13-17 amino acids which appear to be precessively truncated from the carboxy terminus, perhaps after binding to the MHC class II molecule. The finding of predominant self peptides has interesting implications for antigen processing and self-non-self discrimination.  相似文献   

14.
O Weinberger  R N Germain  S J Burakoff 《Nature》1983,302(5907):429-431
Conventional antigens appear to be recognized by T lymphocytes only when associated with major histocompatibility complex (MHC) antigens. Using antigen-specific proliferation as a model for helper T lymphocytes, it has been demonstrated that Ly1+T cells recognize antigen presented in association with syngeneic Ia molecules. In contrast to responses to conventional antigens, however, a large number of studies have suggested that the stimulation of alloreactive Ly1+T cells, and helper T cells specific for allogeneic cytotoxic T lymphocyte (CTL) responses, involve the direct recognition of Ia alloantigens. For the generation of optimal allogeneic CTL activity it has been proposed that Ly1+T cells recognize allo-Ia antigens directly and provide help to pre-CTLs that respond to allo-H-2K and/or D determinants. Thus, the B6.C.H-2bm1 mutant (bm1, formerly referred to as Hz1), which is believed to consist of a substitution of two amino acids in the H-2Kb antigen, has presented a paradox, for it can stimulate strong mixed lymphocyte culture (MLC), graft versus host and CTL responses by T cells of H-2b haplotype mice in the apparent absence of any alloantigenic differences in the I region. We now present evidence that the stimulation of proliferative and helper T cells by the mutant B6.C.H-2bm1 results from the H-2Kba antigen being recognized in the context of syngeneic Ia determinants. Thus responses to both conventional antigens and allogeneic MHC gene products may proceed via the recognition of antigen in the context of self Ia molecules.  相似文献   

15.
Developmental regulation of T-cell receptor gene expression   总被引:13,自引:0,他引:13  
D H Raulet  R D Garman  H Saito  S Tonegawa 《Nature》1985,314(6006):103-107
In contrast to B cells or their antibody products, T lymphocytes have a dual specificity, for both the eliciting foreign antigen and for polymorphic determinants on cell surface glycoproteins encoded in the major histocompatibility complex (MHC restriction). The recent identification of T-cell receptor glycoproteins as well as the genes encoding T-cell receptor subunits will help to elucidate whether MHC proteins and foreign antigens are recognized by two T-cell receptors or by a single receptor. An important feature of MHC restriction is that it appears to be largely acquired by a differentiating T-cell population under the influence of MHC antigens expressed in the thymus, suggesting that precursor T cells are selected on the basis of their reactivity with MHC determinants expressed in the host thymus. To understand this process of 'thymus education', knowledge of the developmental regulation of T-cell receptor gene expression is necessary. Here we report that whereas messenger RNAs encoding the beta-and gamma-subunits are relatively abundant in immature thymocytes, alpha mRNA levels are very low. Interestingly, whereas alpha mRNA levels increase during further development and beta mRNA levels stay roughly constant, gamma mRNA falls to very low levels in mature T cells, suggesting a role for the gamma gene in T-cell differentiation.  相似文献   

16.
Cell-cell adhesion mediated by CD8 and MHC class I molecules   总被引:30,自引:0,他引:30  
CD4 and CD8 are cell-surface glycoproteins expressed on mutually exclusive subsets of peripheral T cells. T cells that express CD4 have T-cell antigen receptors that are specific for antigens presented by major histocompatibility complex class II molecules, whereas T cells that express CD8 have receptors specific for antigens presented by MHC class I molecules (reviewed in ref. 1). Based on this correlation and on the observation that anti-CD4 and anti-CD8 antibodies inhibit T-cell function, it has been suggested that CD4 and CD8 increase the avidity of T cells for their targets by binding to MHC class II or MHC class I molecules respectively. Also, CD4 and CD8 may become physically associated with the T-cell antigen receptor, forming a higher-affinity complex for antigen and MHC molecules, and could be involved in signal transduction. Cell-cell adhesion dependent CD4 and MHC II molecules has recently been demonstrated. To determine whether CD8 can interact with MHC class I molecules in the absence of the T-cell antigen receptor, we have developed a cell-cell binding assay that measures adhesion of human B-cell lines expressing MHC class I molecules to transfected cells expressing high levels of human CD8. In this system, CD8 and class I molecules mediate cell-cell adhesion, showing that CD8 directly binds to MHC class I molecules.  相似文献   

17.
HLA-A2 peptides can regulate cytolysis by human allogeneic T lymphocytes   总被引:3,自引:0,他引:3  
The class-I and class-II molecules encoded by the major histocompatibility complex (MHC) are homologous proteins which allow cytotoxic and helper T cells to recognize foreign antigens. Recent studies have shown that the form of the antigen recognized by T cells is generally not a native protein but rather a short peptide fragment and that class-II molecules specifically bind antigenic peptides. Furthermore, the three-dimensional structure of the human MHC class-I molecule, HLA-A2, is consistent with a peptide-binding function for MHC class-I molecules. An outstanding question concerns the molecular nature and involvement of MHC-bound peptides in antigens recognized by alloreactive T cells. In this study the effects of peptides derived from HLA-A2 on cytolysis of alloreactive cytotoxic T cells (TC) cells are presented. Peptides can inhibit lysis by binding to the T cell or sensitize to lysis by binding an HLA-A2-related class-I molecule (HLA-Aw69) on the target cell. Thus, allospecific TC cells can recognize HLA-derived peptides in the context of the MHC.  相似文献   

18.
Stefanová I  Dorfman JR  Germain RN 《Nature》2002,420(6914):429-434
Major histocompatibility complex (MHC) class I and II molecules are highly polymorphic proteins that bind and present foreign peptides to the clonally distributed alphabeta receptors (TCR) of T lymphocytes. As a population, the immature T lymphocytes generated in the thymus express a very diverse set of TCR specificities. A process of positive selection filters this broad repertoire to optimize peripheral T cells for antigen recognition in the context of available MHC products. Only those precursor T cells whose TCRs generate an adequate but not excessive signalling response to self-peptides bound to the expressed MHC proteins undergo successful maturation. Here we show that post-thymic self-recognition facilitates the antigen reactivity of mature T cells. Both experimental and physiological interruption of T-cell contact with self-peptide MHC ligands leads to a rapid decline in signalling and response sensitivity to foreign stimuli. Because the adaptive immune system must be recruited early in an infectious process when antigen is limiting, these findings suggest that positive selection ensures predictable T-cell recognition of available self-ligands, which in turn promotes efficient responses to pathogens.  相似文献   

19.
M K Newell  L J Haughn  C R Maroun  M H Julius 《Nature》1990,347(6290):286-289
Effector T cells are restricted to recognizing antigens associated with major histocompatibility complex (MHC) molecules. Specific recognition is mediated by the alpha beta heterodimer of the T-cell receptor (TCR)/CD3 complex, although other membrane components are involved in T-cell antigen recognition and functions. There has been much controversy in this regard over the part played by the CD4 glycoprotein. It is known that expression of CD4 correlates closely with the cell's ability to recognize antigens bound to class II MHC molecules and that CD4 can bind to class II molecules. Also monoclonal antibodies to CD4 can modify signals generated through the TCR/CD3 complex. It has therefore been proposed that CD4 binds to class II molecules, coaggregates with the TCR-CD3 complex and aids the activation of T cells. But given that TCR can itself impart restriction on the cell, it remains unclear whether the contribution of CD4-derived signals to those generated through the TCR alpha beta-CD3 complex is central to this activation. Here we report that when preceded by ligation of CD4, signalling through TCR alpha beta results in T cell unresponsiveness due to the induction of activation dependent cell death by apoptosis. These results imply that CD4 is critically involved in determining the outcome of signals generated through TCR, and could explain why the induction of effector T cells needs to be MHC-restricted.  相似文献   

20.
T lymphocytes are predisposed to recognition of foreign protein fragments bound to cell-surface molecules encoded by the major histocompatibility complex (MHC). There is now compelling evidence that this specificity is a consequence of a selection process operating on developing T lymphocytes in the thymus. As a result of this positive selection, thymocytes that express antigen receptors with a threshold affinity for self MHC-encoded glycoproteins preferentially emigrate from the thymus and seed peripheral lymphoid organs. The specificity for both foreign antigen and MHC molecules is imparted by the alpha and beta chains of the T-cell antigen receptor (TCR). Two other T-cell surface proteins, CD4 and CD8, which bind non-polymorphic regions of class II and class I MHC molecules respectively, are also involved in these recognition events and play an integral role in thymic selection. In order to elucidate the developmental pathways of class II MHC-restricted T cells in relation to these essential accessory molecules, we have produced TCR-transgenic mice expressing a receptor specific for a fragment of pigeon cytochrome c and the Ek (class II MHC) molecule. The transgenic TCR is expressed on virtually all T cells in mice expressing Ek. The thymuses of these mice contain an abnormally high percentage of mature CD4+CD8- cells. In addition, the peripheral T-cell population is almost exclusively CD4+, demonstrating that the MHC specificity of the TCR determines the phenotype of T cells during selection in the thymus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号