首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
被誉为"第三代超分子化合物"的杯芳烃[1],由于其独特的穴腔结构使其能通过超分子作用,高选择性地识别离子或分子客体,从而引起了化学家们广泛的兴趣,特别是在近几十年来,杯芳烃在分析化学中的应用研究越来越广泛,利用杯芳烃良好的络合性能来提高分析的选择性己成为研究热点之一.  相似文献   

2.
用量子化学从头算的方法对来自于晶体结构模型的β-环糊精-三乙醇胺超分子体系进行了研究,计算采用密度函数法在Gaussian94程序中执行,并用B3LYP参数作了相关能的校正.分别分析了体系的能量、偶极矩和包合物非氢原子的Mullicon聚集数.计算结果表明超分子体系的稳定性来自于主客体分子间的非键相互作用以及偶极相互作用,环糊精包合物主客体之间无明显的电荷转移迹象,包合物的稳定性与客体分子的尺寸和氢键生成能有关,与实验测定的晶体结构数据相一致.  相似文献   

3.
研究β-环糊精和9,10-蒽醌在水相中形成的超分子体系的荧光光谱,得到不同浓度和不同pH值溶液中客体分子的荧光光谱.研究发现,在水相中,β-环糊精和9,10-蒽醌形成了1∶1的超分子体系,包合常数为1.35×102,与单体分子相比,空腔内9,10-蒽醌分子的荧光强度大大提高.在中性水溶液中,β-环糊精的浓度范围为4×10-4~3.2×10-3mol/L,9,10-蒽醌的荧光强度随着β-环糊精浓度的增加而增强.客体分子的荧光强度在酸性水溶液中具有很强的增强效应,而在中性和碱性介质中,其荧光增强效应大大降低.其中在pH=4.12的溶液中,客体分子9,10-蒽醌在β-环糊精空腔的荧光强度最大.9,10-蒽醌在4.99~66.56ng/mL浓度范围内呈现良好的线性关系,回归方程为F=7.82C(ng/mL)+218.6,相关系数为0.998 5.利用荧光增强效应,得到该超分子体系对9,10-蒽醌的检测限为0.04ng/mL,该数量级是已经报道检测限(0.2μg/mL)的万分之一.  相似文献   

4.
用β-环糊精与四氯化碳在水相中通过范德华力发生包合反应形成了超分子络合物,并用红外光谱和紫外光谱对络合物进行了表征.通过分子模拟计算,证实了发生包合反应的可能性.与底物相比,包合物的红外光谱和紫外光谱的吸收峰发生了偏移.这证实了在水相中β-环糊精与四氯化碳成功地发生了包合反应,形成了稳定的超分子络合物.  相似文献   

5.
环三磷腈-咪唑氢键体系的超分子液晶行为研究   总被引:3,自引:0,他引:3  
制备了六(4-羧基苯氧基)环三磷腈(CTPacid)与棒状型咪唑衍生物(I)形成的氢键超分子复合物,并研究了复合物的液晶行为.结果表明,复合物能呈现层列液晶A相(SmA),讨论了烷氧基链的长短,数目对复合物超分子液晶行为的影响.  相似文献   

6.
分子自组装及超分子自组装体的研究进展   总被引:1,自引:0,他引:1  
基于分子自组装的超分子科学是21世纪的新概念和高新技术的重要源头之一.简要介绍了超分子体系,阐述了分子自组装的基本概念和特点,系统地总结并评述了超分子自组装体的最新进展和成果,并展望了超分子自组装研究的发展前景.  相似文献   

7.
通过1H NMR分析手段,研究了客体N-苄基联吡啶三氟甲磺酸盐与主体二苯并-24-冠-8在溶液中的包合行为.研究结果表明,主-客体在溶液中形成1∶1的超分子包合物,且具有准轮烷式几何构型,其缔合常数为12.3 L/mol.  相似文献   

8.
论述了近年来国际上较为活跃的超分子化学领域,在配位化合物的分子设计和性质研究等方面的重要应用.依据超分子自组装与配位化合物的相关理论及研究状况,紧密结合本研究组的近期工作和最新进展,分析探讨了氨基硫脲系列超分子配合物的分子设计和组装,及其组成-结构-非线性光学性质,为后续新型功能性超分子配合物的设计合成提供必要的基础.  相似文献   

9.
利用水热法合成了一例新的超分子配合物——5-硝基水杨醛缩乙二胺双希夫碱钴(Ⅲ)配合物.通过元素分析、红外光谱和X-射线单晶衍射等手段对其组成、结构进行了研究,并对合成条件进行了探讨.结果表明,配体采用四齿螯合的方式与金属钴离子配位,配合物结构单元之间通过分子间氢键构筑得到了配合物的超分子网络结构.热重分析表明,配合物具有良好的热稳定性.  相似文献   

10.
有机小分子甲醇、乙醇、丙醇、异丙醇、丁醇、丙酮、丁酮、乙腈、乙二醇在Britton-Robison三酸缓冲液中,不仅改变了β-环糊精(CD)空腔的微环境,而且使β-CD/萘酚超分子包合物的离解常数发生改变.文章用荧光法研究了主客体分子间的诱导契合和几何互补等方面β-环糊精/萘酚对小分子的结合能力和分子选择性.结果表明:β-环糊精/萘酚作为一种光谱探针可用于指示分子键合能力和分子识别能力.  相似文献   

11.
采用荧光光谱滴定法测定了单-[6-(8-氧喹啉基)]-β-环糊精(2)与9 种脂肪醇、3 种脂肪酸和樟脑手性对映体在磷酸缓冲溶液中,25℃时形成超分子配合物的稳定常数,并与母体β-环糊精(1)的分子键合能力进行了比较.研究结果表明,客体分子的结构与主体化合物空腔的尺寸匹配决定了所形成超分子配合物的稳定性,即范德华力和疏水相互作用是分子识别的主要驱动力,而氢键作用对超分子配合物的稳定性有重要影响.键合到β-环糊精主面的喹啉基不仅可以作为一种荧光光谱的探针,也可以识别客体分子的手性,其中对(+ )/ (- )-薄荷醇的对映体选择性高达4.4(ΔΔG°= - 3.67kJ·m ol- 1).  相似文献   

12.
以8-羟基喹啉和3,5-二硝基水杨酸合成了一种黄色的超分子化合物,用X-射线衍射法确定了其晶体结构,大量的分子内和分子间氢键使此超分子化合物结构得以稳定。抑菌活性测试发现此超分子化合物的抑菌活性明显高于8-羟基喹啉和3,5-二硝基水杨酸,其中对枯草芽孢杆菌的抑菌效果最好。  相似文献   

13.
介绍了β-环糊精与四氢呋喃在水相中通过范德华力发生包合反应形成的主客体超分子络合物,并用核磁共振氢谱对络合物进行了表征.通过分子模拟计算,证实了发生包合反应的可行性.由核磁共振分析,给出了客体分子在环糊精空腔的可能构象.  相似文献   

14.
使用 CNDO/2程序和超分子近似计算出顺丁烯二酸酐(A)与甲苯、苯、异戊二烯、丁二烯四种分子(B)的相互作用能依次为23.00,18.25,11.11和10.42kJ·mol~(-1),计算了分子相互作用的势能面,分析了前沿分子间的成键状况和各原子的电荷变化.计算表明,在这四个体系中,电荷迁移的数量很小,且随分子间距由大到小,A 分子先失电子,然后又得电子.  相似文献   

15.
酶因在催化过程中展现出特异的选择性和活性而备受关注.在配位自组装过程中,通过调节金属结点的种类和有机配体结构,金属-有机分子笼(MOCs)的空腔可获得多种作用力协同的特殊环境.近年来,对于超分子反应器的研究显示,其空腔结构类似于生物酶,能在催化过程中展现出非常高的反应速率、空间和立体选择性,这一特性引起了科学家们的研究兴趣.文章就近两年MOCs在催化方面的应用研究进展进行了综述.  相似文献   

16.
分别研究了 5_(对_羧基亚甲基 )苯基_10 ,15 ,2 0_三 (对_甲基 )苯基卟啉 (p_CMPTTP)及其锌 (Ⅱ )配合物Zn(p_CMPTTP)与 (1_氨基 )蒽醌 (AAQ)通过氢键的超分子自组装。根据静态猝灭过程的描述式由荧光光谱滴定数据计算了它们的结合常数 ,发现锌 (Ⅱ )配合物与AAQ超分子的结合常数小于自由羧卟啉与AAQ超分子的结合常数。这可能是由于卟啉的金属化作用对超分子不对称氢键强度的影响引起的。  相似文献   

17.
 2016年度诺贝尔化学奖授予Jean-Pierre Sauvage、Sir J.Fraser Stoddart和Bernard L.Feringa 3位科学家,以表彰他们在分子机器设计与合成方面的重大贡献。分子机器是一个新兴的研究领域,致力于构建分子水平上的机器。超分子化学在分子机器的研究中起到至关重要的作用,从一定意义来说,这是继1987年以来,诺贝尔化学奖第2次授予超分子研究领域的科学家。本文简述分子机器的设计理念、合成思路、发展现状和前景。  相似文献   

18.
超分子化学的研究和进展   总被引:4,自引:0,他引:4  
超分子化学是化学的一个崭新的分支学科.综述了超分子化学的发展历程、超分子的化学分类、超分子化合物的合成以及应用等问题.  相似文献   

19.
金属有机分子笼(MOCs)在主客体化学、催化、光学生物成像等众多领域表现出潜在的应用价值,从而引起众多科学家的研究兴趣.稀土金属超分子配位体系由于其独特的光学和磁学特点使众多超分子学者关注和研究.基于配体的设计,综述了不同构型的稀土金属有机分子笼的构筑以及它们在光、磁、催化等方面的应用.  相似文献   

20.
通过噻吩-乙炔-乙烯交替构建的环状共轭低聚物,因其具有独特的π共轭体系和内部空腔,表现出非线性光学、双光子吸收等特殊光电性质.通过引入联噻吩基团,制备出一种新型的八元噻吩-乙炔-乙烯环状共轭低聚物,其晶体结构表明,该大环分子之间存在不常见的S-π弱相互作用,并且存在有序的分子内通道和分子间通道.扫描电镜显示该环状共轭低聚物能自组装成纤维状固体,长度可达几厘米.荧光光谱研究证实了C_(60)对该环状共轭低聚物具有显著的荧光淬灭作用,说明作为电子给体的该环状共轭低聚物与作为电子受体的C_(60)之间存在超分子行为和电子转移现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号