首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
程序性细胞死亡(细胞凋亡)是一个对生物体的发育、组织的动态稳定至关重要的生物学过程。细胞凋亡的发生过程如下:在决定要凋亡的细胞内,一些死亡基因被启动,细胞被杀死,这称为凋亡的执行过程。随后,凋亡细胞被吞噬细胞识别并内吞;最终,凋亡细胞在吞噬细胞内被完全降解。凋亡细胞的吞噬和降解是细胞凋亡程序的重要环节,凋亡细胞的清除障碍会引起炎症疾病和免疫紊乱。在秀丽隐杆线虫中,吞噬受体CED-1对于吞噬细胞识别凋亡细胞起着关键作用。本研究发现细胞内的蛋白分选复合体retromer可以通过调控CED-1在细胞膜与细胞质之间的循环来参与凋亡细胞的清除过程。Retromer会被招募到吞噬小体的表面,介导CED-1从吞噬小体到细胞膜的回收过程。当retromer丧失功能时,CED-1会被运送到溶酶体降解,CED-1的这种减少造成了凋亡细胞的清除障碍。我们的工作揭示了retromer复合体参与凋亡细胞清除的这一新功能,并发现了吞噬受体的一种新的调控机制。  相似文献   

2.
日前,在科技成果评价机构组织的鉴定会上,一种独特的免疫蛋白分子引起了评审专家的兴趣. "肿瘤细胞死亡时的照片上,周边有起泡的现象非常有意思."国家重点研发计划首席科学家、南京大学李朝军教授表示,这个情况和细胞焦亡挺像,值得更进一步的研究和应用. "这种分子是在七鳃鳗的免疫系统中找到的,它能够识别出人体肿瘤细胞,并从外面打孔,让肿瘤细胞死亡."研发团队带头人、辽宁师范大学原副校长李庆伟教授介绍,目前正利用这种明星分子推动癌症早筛工作.  相似文献   

3.
许多人以为,为了避免浪费,剩饭可以加热后再吃。但研究发现,剩饭重新加热以后再吃难以消化,时间长了还可能引起胃病。我们常吃的米饭中所含的主要成分是淀粉,淀粉经口腔内的唾液淀粉酶水解成糊精及麦芽糖。经胃进入小肠后,被分解为葡萄糖,再由肠黏膜吸收。淀粉在加热到60℃以上时会逐渐膨胀,最终变成糊状,这个过程称为“糊化”。人体内的消化酶比较容易将这种糊化的淀粉分子水解。而糊化的淀粉冷却后,会产生“老化”现象。老化的淀粉分子若重新加热,即使温度很高,也不可能恢复到糊化时的分子结构。人体对这种老化淀粉的水解和消化能力都大大…  相似文献   

4.
水分具有一定的积极性,因此分子与分子之间可以通过氢键形成一种链状结构。当水不经常受到撞击,也就是说不经常处于运动状态时,这种链状结构就会不断扩大、延伸,从而使水断“衰老”,最终变成“死水”,即老化水。未成年人如常饮用老化水,细胞的新陈代谢会明显减慢,并影响生长发育;而中老  相似文献   

5.
科技新讯     
人为什么会感到寒冷据近日出版的《自然神经系统科学》杂志报道,研究人员首次从分子层面进行研究,发现了能让我们感觉到寒冷的一种膜蛋白的工作机制。这个研究主要集中在能感受寒冷的接受器上的一个特殊部位。这个部位也普遍存在于许多其他的接受器中,因此具有较为广泛的意义。科学家发现,这个特殊部位与存在于细胞膜中的传递信号的名为PIP2的脂质能发生相互作用。若是PIP2被分解,接受器就失去了活性,这样一来,细胞对寒冷的刺激就不再敏感了。有许多信号如神经传递素和生长因素,都能促进PIP2的分解。研究人员表示,只要能降低这种蛋白质…  相似文献   

6.
朊病毒(prion或PrP)是医学生物学领域中至今尚未彻底弄清,与病毒和类病毒都很不同的一种蛋白质传染病原。最早提出“prion”一词的是1982年美国加州大学Prusiner等人,当时他们将该病原描述成蛋白性传染颗粒(proteinaceous infectious particles),有时也描写为蛋白酶抗性蛋白(proteinase resistant protein)。在此之前曾经有过许多不同的名字,如:非寻常病毒、慢病毒、瘙痒病伴随纤维(scrapie associated fibrils,SAF)等。多年来大量的实验说明,这是一组至今不能查到任何核酸、对各种理化作用具有很强抵抗力、传染性甚强、分子质量在27000~30000道尔顿的蛋白质颗粒,它们能在人和动物中引起可传递的海绵脑病的特殊病因。我们实验室**在20世纪70年代和80年代初期多以慢病毒(slow viruses)、亚病毒(subviral agents)、非寻常因子(unconventional agents)、非寻常病毒(unconventional viruses)等不统一的名词来描绘这种特殊病因。80年代后期我们改用朊病毒。在多年来的实践中,我们已习惯于称它们为朊病毒,而并无不恰当之感觉,这是因为:1.大量的实验研究证明,prion本身不含任何核酸成分,由分子量为27000~30000道尔顿膜蛋白组成。2.它们与感染性成分一致。3.在正常细胞里,既有朊病毒的前驱蛋白质,细胞朊蛋白(PrPc),或朊病毒的异构体(isoform),又有编码正常细胞朊蛋白的基因。我国已克隆了人和动物的这种基因,并在体外表达出相应的细胞朊蛋白,经动物免疫获得抗朊蛋白的抗体。4.Prusiner等人用纯化和转基因动物等方法已证明由细胞朊蛋白(PrPc)转化为朊病毒(PrPSc)发生在蛋白质产生之后即翻译后变化(post translational change),因此,就出现了构型变化和构型疾病(transformational diseases)的提法。* 洪涛院士是医学名词审定委员会病毒名词审定组组长。** 中国预防医学科学院病毒形态研究实验室。  相似文献   

7.
蛋白质是细胞内极其重要的生物大分子。细胞的许多重要功能,包括酶和激素的功能、运动、运输、免疫反应等都是通过蛋白质来实现的。正是由于其重要性,所以长期以来蛋白质一直是生物化学研究的一个极重要的领域。人们关注蛋白质在细胞内是如何合成的,到目前为止,至少已有5个诺贝尔奖授予了这一领域的研究者。但对于相反的过程,即蛋白质在细胞内是如何降解的,很长一段时期中很少有人关注。而以色列科学家阿龙·切哈诺沃(Aaron Ciechanover)、阿夫拉姆·赫什科(Avram Hershko)和美国科学家欧文·罗斯(Irwin Rose)正是在这方面作出了突破性的贡献,发现了泛素介导的蛋白质降解机制,因而共同获得了2004年诺贝尔化学奖。一、泛素:蛋白质降解的标记者实验证明,标记被降解蛋白质的分子是一个由76个氨基酸残基组成的多肽,最早于1975年从小牛组织中分离得到。因为随后发现在所有真核生物的不同组织中都有它的存在,所以将其称之为泛素(ubiquitin,源于拉丁字ubique,意指到处存在的)。二、ATP:细胞内蛋白质降解的供能者一般而言,生物体内的合成代谢需要提供能量,而分解代谢则释放能量。所以很长一段时期内,人们普遍认为,体内蛋白质的降解是不需要提供能量的。一些蛋白水解酶发挥功能时就是这样,如胰蛋白酶在小肠内将食物中的蛋白质降解成氨基酸。类似地,在溶酶体中对从其外部进入的蛋白质的降解也不需要能量。然而,早在上世纪50年代的实验就已表明,细胞内蛋白质的降解确实需要能量。这个看似自相矛盾的现象,即细胞内蛋白质的降解需要能量而细胞外蛋白质降解不需要附加能量,长期以来使研究者感到迷惑。切哈诺沃、赫什科和罗斯于上世纪70年代后期和80年代早期使用网织红细胞的无细胞系统进行了一系列重要的研究,成功地证明细胞内蛋白质的降解需要以多步骤的反应导致泛素标记被降解的蛋白质。这个过程使细胞以高度的特异性降解不需要的蛋白质,而正是这种精确的调节需要ATP(adenosine triphosphate,腺苷三磷酸)提供能量。三、机制:死亡之吻切哈诺沃和赫什科在1977年开始使用网织红细胞抽提物进行依赖于能量的蛋白质降解研究,发现这种抽提物可以被分为两个组分。两个组分单独存在时都不具有活性,但当两者重新组合时,就启动了依赖ATP的蛋白质降解。1978年,他们报道了其中1个组分的活性成分是一种分子量约为9 000的热稳定的多肽APF-1 (active principle in fraction 1),即后来证明的泛素,并证明APF-1能与各种蛋白质以共价键结合。1980年他们和罗斯共同报道APF-1 可以多个分子同时结合于同一蛋白质,这一现象被称为多泛素化。目前已知,蛋白质的多泛素化是一种控制信号,其导致被标记蛋白质在蛋白酶体中的降解。正是多泛素化的反应对被降解的蛋白质进行了标记,所以将其戏称为“死亡之吻”(kiss of death)。因为泛素在真核生物中普遍存在,所以研究者很快明白泛素介导的蛋白质降解在真核细胞中具有普遍的意义,而且也猜测到ATP形式的能量需要可能对细胞控制降解过程的特异性具有意义。因而进一步的研究就是要鉴定使泛素结合于其靶蛋白的酶系统。在1981年到1983年之间,切哈诺沃、赫什科和罗斯在细胞中发现了3种新的酶——泛素激活酶E1、泛素结合酶E2和泛素连接酶E3,提出了“多步骤泛素标记假说”(见图1)。至今的研究表明,一个典型的哺乳动物细胞含有1个或少数几个不同的E1酶、几十个E2酶和几百个E3酶。细胞能使用泛素系统降解有缺陷或不再需要的蛋白质。实际上,细胞中多至30%新合成的蛋白质因为不能通过细胞严格的质量控制,而由泛素标记转运到蛋白酶体被降解。 步骤①:E1酶催化的依赖ATP供能的泛素(UB)活化; 步骤②:泛素分子转移到E2酶; 步骤③:E3酶识别要降解的靶蛋白(TARGET),E2酶-泛素复合物与靶蛋白结合并使泛素分子标记从E2酶转移到靶蛋白; 步骤④:E3酶释出泛素标记的蛋白质; 步骤⑤:重复步骤④,使靶蛋白与多个泛素结合,即所谓的靶蛋白的多泛素化; 步骤⑥:蛋白酶体识别多泛素化的靶蛋白,泛素分子脱落而靶蛋白进入蛋白酶体被降解为小肽。四、蛋白酶体:蛋白质降解的执行者很多蛋白酶体,如人的一个细胞含有大约30 000个蛋白酶体。蛋白酶体是呈桶型结构的多亚基蛋白酶复合体,它能将蛋白质降解成7~9个氨基酸残基组成的小肽。蛋白酶体的活性表面在桶内而与细胞的其余部分相隔离,进入活性表面的惟一关卡能识别多泛素化标记的蛋白质,在移去泛素标记的同时接纳它们进入蛋白酶体而进行降解,形成的小肽从蛋白酶体的另一端释出。蛋白酶体本身不能选择被降解的蛋白质,是E3酶的特异性决定了细胞中哪个蛋白质要被标记而送到蛋白酶体进行降解。五、泛素系统:多种细胞功能的调节者泛素介导的蛋白质降解系统涉及细胞的多种重要生理功能,参与对细胞周期、DNA复制和染色体结构等的调控。这种系统的缺陷能导致各种疾病,包括一些癌症。1.细胞周期细胞周期是指一个细胞经生长、分裂而增殖成两个细胞所经历的全过程,细胞周期的调控对生物的生存、繁殖、发育和遗传具有十分重要的意义。在细胞周期调控中,细胞周期蛋白是一个关键蛋白质。泛素连接酶E3作为“细胞分裂后期促进复合物”的主要组分,通过对细胞周期蛋白N末端进行标记使其降解,而在控制细胞周期上发挥重要的作用。该复合物在细胞有丝分裂和减数分裂期间染色体分离中也具有关键的作用。减数分裂或有丝分裂中染色体的错误分离会导致细胞染色体数的改变,而这正是怀孕后自然流产的主要原因。一个额外的21号染色体的形成则导致唐氏综合征。因为在有丝分裂中重复地进行染色体的错误分离,许多恶性肿瘤细胞也会具有数目改变了的染色体。泛素调节系统的其他酶也参与细胞周期的调节,如调节酵母细胞周期的细胞因子Cdc34实际上就是一种泛素结合酶E2。2.DNA修复DNA修复是生物为保持其复制精确性而具有的一种特殊功能。p53蛋白作为重要的转录因子,通过调节DNA修复相关基因的表达而实现对DNA修复的调控。p53蛋白在细胞内的降解也是通过特定的E3酶标记的。正常细胞中p53蛋白不断地合成,又不断地降解,在细胞中含量低。但在DNA受损后,触发了p53蛋白的磷酸化而不再与E3酶结合,使其在细胞中含量很快增加,造成细胞周期的停顿并促使对损伤DNA进行修复。但是如果DNA损伤程度太广,则不再进行修复而触发细胞程序性死亡。p53蛋白对肿瘤具有抑制作用,被称为“基因组的卫士”。但病毒可以通过特定的蛋白质活化相关的E3酶对p53蛋白进行泛素化而将其降解,其结果是病毒感染的细胞不能再对DNA损伤进行修复,也不触发细胞程序性死亡,造成DNA突变大量增加而导致癌症。3.免疫和炎症反应转录因子NF-κB可以调节细胞的许多对免疫和炎症反应重要的基因。正常情况下,细胞中的NF-κB与其抑制蛋白结合形成没有活性的复合物。但是当细胞暴露于感染的细菌或某种信号物质时,抑制蛋白的磷酸化导致其泛素化而在蛋白酶体内降解。释出的活性NF-κB被转运到细胞核,在那儿结合并激活特定基因表达而发挥其在免疫和炎症反应中的功能。4.囊性纤维化遗传病囊性纤维化是由细胞膜上称之为囊性纤维化跨膜传导调节蛋白(CFTR)的氯离子通道功能性地缺失所引起。这种缺失是由于囊性纤维化病人细胞中合成的CFTR蛋白缺失苯丙氨酸,不能进行正确的折叠而被转运,而是通过泛素介导的蛋白质降解系统降解。没有功能性氯离子通道的细胞不能通过其细胞膜转运氯离子而导致病变。泛素介导的蛋白质降解系统与细胞功能关系的了解也促使了其在药物研究上的应用。可以针对泛素介导降解系统的组分设计药物以防止特定蛋白质的降解,也可设计药物激发该系统去摧毁不想要的蛋白质。一种称为Velcade的蛋白酶体抑制物已被用于多发性骨髓瘤作为临床试验药物。科学上的每一个重大发现,都会使人类在从必然到自然的进程中迈出一大步。泛素介导的蛋白质降解系统的发现使人们有可能在分子水平上了解细胞如何控制许多非常重要的生物化学过程。我们可以期待,随着研究的不断深入,必定会有更多的细胞过程发现与这一系统密切相关。 *明镇寰教授为生物化学与分子生物学名词审定委员会委员。  相似文献   

8.
肖兵 《科学大观园》2010,(21):I0001-I0001
最近,美国防部高级研究计划局正致力于为美军研发出一种“飞行悍马”,这种“飞行悍马”的驾驶员接受训练的时间大致同学习驾驶一辆装甲车时间相当。这种“飞行悍马”被研制者称作“变形车”能够在地面驾驶执行巡逻任务,  相似文献   

9.
《科学大观园》2009,(15):21-22
“在刚得知被感染的那一个月我几乎天天计划怎么‘意外死亡’。我觉得任何死亡方式都比得艾滋病死去好:但现在我得到这么多读者的关爱,觉得死去太遗憾了,活着才是最大的财富——而且要高质量地活着。”  相似文献   

10.
英格兰火山学家约翰·默里最近研究发现,有一种类型的火山爆发可能是因暴雨引起的。由此,将来有可能通过简单地观察天气就能提前知道这种火山爆发是否会发生,从而提前准备,避免造成人员伤亡。由暴雨引发的火山爆发被称为“圆丘倒坍”型爆发,是火山爆发中最危险的一种形式。20世纪中有70%以上与火山有关的死亡都是这种类型的火山爆发引起的。默里说,由暴雨引发  相似文献   

11.
多数男性对蔬菜、水果这类“女性化”的食物嗤之以鼻,而更愿意称自己为肉食动物. 不过,据路透社报道,英国食物研究所的最新报告指出,只要每星期食用小量西兰花,就有助预防前列腺癌. NO1.西兰花 这项研究的受试者被分成两组,每星期分别食用4份西兰花或豌豆.结果发现,吃西兰花的一组病人体内出现了“抗癌基因”,可以保护男性免受前列腺癌的袭击.  相似文献   

12.
黄色和橙色的蔬菜,如胡萝卜,含有β-胡萝卜素.这种化学物质能在身体里转化成维生素A,它能增加t细胞数量、增强免疫.胡萝卜也是很好的小菜.卷心菜是富含谷胱甘肽(具有免疫增强功能)的一种植物.卷心菜很容易获得,而且不贵.卷心菜也含有丰富的维生素C、维生素E和胡萝卜素等,卷心菜的总维生素含量比番茄高三倍,所以也具有很好的抗氧化作用及抗衰老作用.  相似文献   

13.
文文 《科学大观园》2014,(24):47-47
美国化学学会上传了一段视频,介绍人死之后体内发生的可怕化学过程.从各项身体机能停止运转到使用各种化学药品对尸体进行防腐处理,再从葬礼到体内发生的各阶段变化.视频的开场是一段话:“假设你刚刚在椅子上死去,接下来会发生什么?”根据旁白的描述,你的心脏停止泵血,体内的血液流动停止.这会导致血液凝结并形成凝块.凝块在引力的作用下被往下拉拽,这一过程被称之为死后血液坠积或者尸斑.旁白称:“没有了血液循环,体温会下降,肌肉在尸僵过程中变僵硬.”这会导致呼吸停止,细胞失去供氧,细胞内的线粒体无法形成腺嘌呤核苷三磷酸(ATP),最终走向死亡.  相似文献   

14.
在全球科技大会上,谷歌X实验室生命科学小组负责人安德鲁·康拉德透露,谷歌正在设计一种纳米磁性粒子,这种粒子可以进入人体循环系统,进行癌症和其他疾病的早期诊断与治疗.这种纳米磁性粒子,就是大名鼎鼎的“纳米机器人”.纳米机器人的概念最早是由诺贝尔物理学奖得主理查德·费曼1959年提出的.他认为人类未来有可能建造一种分子大小的微型机器,可以把分子甚至单个原子作为建筑构件,在非常细小的空间里构建物质.这意味着人类可以在底层空间制造任何东西.这是医学革命——纳米机器人可能在未来不久,就能应用到实际临床医学中去,如今不少科学家已经踏上实现这个梦想的征程.不论是能够终结癌细胞的DNA机器人,还是能够在体内“巡逻”的“健康卫士”,都在纳米尺度世界中完成现有科技条件下无法完成的任务.  相似文献   

15.
被联合国粮农组织(FAO)认定的迄今唯一“超级害虫”烟粉虱,具有一种类似“以子之矛、攻子之盾”的本领:其从寄生植物那里获得了防御性基因.这是现代生物学诞生100多年来,首次研究证实植物和动物之间存在功能性基因水平转移现象.国际顶级科学期刊《细胞》3月25日在线发表的这一惊人发现,由中国农业科学院蔬菜花卉研究所张友军团队历经20年追踪研究所得.  相似文献   

16.
<正>人们知道一顿美餐可以刺激释放多巴胺。现在一项来自德国马普学会新陈代谢研究所的研究表明,大脑释放多巴胺发生在两个不同的时间:食物入口和入胃。这种机制可能增加对美食的渴望,并延迟大脑发出"吃饱"的信号。这项研究近日发表在《细胞·代谢》上。该研究负责人Marc Tittgemeyer表示,通过正电子发射断层扫描技术,研究人员不但发现了进食过程中两次多巴胺分泌高峰,还找到了大脑中与这两次多巴胺分泌相关的特定区域。第一次分泌发生在与奖  相似文献   

17.
正从严重的地震到经济崩溃,这些意想不到的灾难性事件往往被称为“黑天鹅事件”。而不久前,科学家发现动物界中也会发生类似的罕见事件,并且通常是以种群突然大规模死亡的形式。科学家在研究中应用了一种新方法来确定这种动物种群数量的滑坡,揭示出寄生虫、严寒的冬季,以及掠食者在其中所起的作用。他们还指出,气候变化很可能会导致  相似文献   

18.
<正>科学家在对老鼠进行的研究发现,当它们睡眠不足时,大脑中的"清除细胞"变得更加活跃,这些被称为"星形胶质细胞"的细胞,就像是微型胡佛电动吸尘器,当大脑连接变得衰弱和分裂时就会清除神经突触细胞。研究报告作者、意大利马尔凯理工大  相似文献   

19.
自从一种神秘的新型传染病2012年在中东地区造成多人死亡以来.科学家便一直在尝试查明其爆发的源头。而今的他们或许在一个“不太可能”的物种中找到了线索:已经退役的赛驼。这种“中东呼吸系统综合症”(MERS)迄今为止已经造成了94人感染.并导致46人死亡。其中一些病人显然是由其他人所传染,但也有一些病人距离已知的病人非常遥远。  相似文献   

20.
本文提供了一种关于信息概念的谱系.信息在今日深深植根于“平台式的资本主义”,这种资本主义通过敲击键盘和点击鼠标的方式来实现“制造差异的差异”.到20世纪中期,这已经成为对“信息的价值”(又被称为“意义”)的彻底相对化理解的默认立场.本文的前半部分处理的是信息如何变成如此相对化的问题,这可回溯到在康德将自然神论去神秘化之后,有关价值的短期评价与长期评价的区别的普遍崩溃.在黑格尔的支持下,马克思试图让这种区别继续存在,特别是通过剥削的概念.无论工人从他们的雇佣者那里获得什么短期利润,据说他们都将由于更长远的损失(又被称为“剩余价值”)而招致损害.平台式的资本主义提供的是一种更为巧妙的马克思理论意义上的剥削,这种剥削并不依赖于一种明确意义上的雇佣或工资.进而,2.0版的资本主义用同样便于占用的可能空间来取代1.0版的资本主义所占用的物理空间.在此语境中,“数字的生产消费者”这个概念是一种能让人们重新控制他们的数据的重要纠正措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号