共查询到9条相似文献,搜索用时 0 毫秒
1.
地下车库中纯视觉的SLAM方法无法克服光线不足和弱特征纹理两大不利因素,为此论文提出一种基于VINS-Mono框架下改进的视觉惯导融合算法,把原算法中提取Harris角点的方法改进为提取灰度值陡变的像素点,并使用非线性优化方法在初始化阶段进行视觉位姿估计。后端采用滑动窗口的形式建立先验估计残差、IMU残差以及基于灰度值不变原理构建的视觉残差的联合残差模型,进一步提升了系统底层变量的优化效果从而提高算法的定位准确度。通过基于EuRoc数据集的仿真实验和地下车库实际场景的实车实验,验证了所提算法的鲁棒性和精确性。 相似文献
2.
3.
针对现有的激光里程计在面临室外大场景建图时,普遍会出现定位精度低、鲁棒性差的问题,本文提出一种16线激光和IMU惯性测量单元紧耦合的SLAM算法。首先对IMU进行估计位姿,通过线性插值矫正激光点云的运动畸变;接着通过曲率提取场景特征,并根据不同特征性质进行分类;然后利用帧间匹配模块在滑动窗口内构建局部地图;最后利用帧与局部地图匹配得到的距离和IMU数据构建联合优化函数。借助KITTI数据集和自行录制的园区数据集,对改进算法与主流的Lego-LOAM和同样使用紧耦合方案的LIO-Mapping进行分模块和整个系统的精度评定,实测结果表明,在符合里程计实时性的要求下,改进激光里程计精度高于Lego-LOAM和LIO-Mapping方案。 相似文献
4.
为了提高ORB-SLAM2系统的位姿估计精度并解决仅能生成稀疏地图的问题,提出了一种融合ICP算法与曼哈顿世界假说的位姿估计策略并在ORB-SLAM2系统中加入稠密建图线程来实现稠密建图。首先通过ORB特征点法、LSD算法和AHC方法进行点、线、面特征的提取,其中点、线特征跟上一帧匹配,面特征在全局地图中匹配。然后采用基于surfel的稠密建图策略将图像划分为非平面与平面区域,非平面采用ICP算法计算位姿,平面则通过面与面的正交关系确定曼哈顿世界从而使用不同的位姿估计策略,其中曼哈顿世界场景通过位姿解耦实现基于曼哈顿帧观测的无漂移旋转估计,而曼哈顿世界场景下的平移以及非曼哈顿世界场景位姿采用追踪的点、线、面特征进行估计和优化;最后根据关键帧和相应位姿实现稠密建图。采用TUM数据集对所提建图方法进行验证,实验结果与ORB-SLAM2算法比较,最终均方根误差RMSE平均减少0.24cm,平均定位精度提高7.17%,验证了所提方法进行稠密建图的可行性和有效性。 相似文献
5.
针对无GPS或弱GPS信号下的室外环境中的车辆无法定位问题,提出了一种利用激光地图辅助视觉定位方法。首先利用双目相机的视差图的深度与三维激光雷达地图进行匹配,然后通过最小化深度残差来估计六自由度相机位姿,接着利用视觉跟踪产生的良好的初始估计和提出的深度残差方法可有效地估计相机的位姿,最终通过估计相机的位姿完成定位。通过对比多个公开数据集,验证所提方法的准确性和有效性,最后利用实验小车采集校园数据,仿真和实验结果都证明利用此方法的有效性和在室外环境下的视觉定位的准确性。 相似文献
6.
为了提高室内动态场景下定位与建图的准确性与实时性,提出了一种基于目标检测的室内动态场景同步定位与建图(simultaneous localization and mapping, SLAM)系统。利用目标检测的实时性,在传统ORB_SLAM2算法上结合YOLOv5目标检测网络识别相机图像中的动态物体,生成动态识别框,根据动态特征点判别方法只将识别框内动态物体上的ORB特征点去除,利用剩余特征点进行相机位姿的估计,最后建立只含静态物体的稠密点云地图与八叉树地图。同时在机器人操作系统(robot operating system, ROS)下进行仿真,采用套接字(Socket)通信方式代替ROS中话题通信方式,将ORB_SLAM2算法与YOLOv5目标检测网络相结合,以提高定位与建图的实时性。在TUM数据集上进行多次实验结果表明,与ORB_SLAM2系统相比,本文系统相机位姿精确度大幅度提高,并且提高了每帧跟踪的处理速度。 相似文献
7.
可移动坐标框架的智能车辆同时定位与建图 总被引:1,自引:0,他引:1
针对智能车辆在进行未知环境探测时,为实现完全自主需要解决同时定位与建图问题.基于扩展卡尔曼滤波器方法中较大的车辆方向角方差导致明显的不一致性,提出一种可移动坐标框架方法.在检测到新的特征时,将参考框架移动到车辆位姿处,使特征的初始方差与车辆位姿估计误差无关,同时车辆方向角方差由于仅受局部环境影响而始终保持为较小值,从而获得较好的一致性估计性能.人工环境和自然环境中的实验结果表明,该方法可以获得精确的车辆轨迹估计和环境特征地图. 相似文献
8.
为解决室内环境中移动机器人的自主导航问题,提出了一种基于结构化环境的线性距离特征提取算法。首先通过建立机器人运动模型,对激光雷达获得的点云数据进行预处理。然后采用聚类算法对预处理后的数据进行分割和合并。采用正交拟合算法,估算特征线段的最大角度公差,并提取竖直和水平特征线进行误差纠正。仿真实验结果表明:算法可有效提取室内环境特征线段并建立特征地图。同时调用数据集与ICP(iterative closest point)算法进行对比测试,结果表明使用该算法构建环境地图,可见使用此算法可降低建图时间复杂度,同时提高地图匹配精度。 相似文献
9.
针对激光雷达非匀速运动畸变问题,提出一种融合视觉惯性里程计和激光雷达里程计,进行三维地图构建与定位(simultaneous localization and mapping, SLAM)方法.经预处理和时间戳对齐后的数据,应用视觉估计和惯性测量单元(inertial measurement unit, IMU)预积分对视觉进行初始化,通过约束的滑窗优化和视觉里程计的高频位姿,将传统雷达匀速运动模型改进为多阶段匀加速模型,从而降低点云畸变.同时,利用列文伯格-马夸尔特(Levenberg-Marquardt, LM)方法优化激光里程计,提出一种融合词袋模型的回环检测方法,最终实现三维地图构建.基于实车试验数据,通过与LEGO-LOAM(lightweight and ground-optimized lidar odometry and mapping on variable terrain)方法的结果对比,本文方法在平均误差和误差中位数上分别提升了16%和23%. 相似文献