首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
葛愉成  何海萍 《科学通报》2012,(Z1):120-128
为了研究化学反应、原子分子发光等超快速过程中电子态的时间演化过程,需要能量越来越高、脉冲时间宽度越来越短、单色性越来越好的光脉冲作为激发和探测手段.但是,如何快速、精确地测量这些光脉冲具体细致的时间结构,一直是科学界的一个挑战.在过去的十多年时间里,人们在测量超紫外线阿秒脉冲方面作出了巨大的努力,取得了显著的成果.迄今为止,已经发展出了几种测量阿秒脉冲时间宽度和重建脉冲形状的方法,如阿秒光谱相位干涉直接电场重建法(SPIDER)和阿秒频率分辨光学快门法(FROG).然而,这些方法都是从传统的光学测量方法演变而来的,不仅需要当代最先进的实验装置,而且需要十分复杂的分析计算方法和实验数据拟合过程.为了推动阿秒计量学的发展,进一步开展阿秒测量、脉冲时域定位(定时)、实验数据评估、探测器刻度,以及对阿秒脉冲光源进行改进、优化和应用,我们提出一种直接、快速、精确的基于光电子能谱变换方程的解析方法,利用激光辅助超紫外线气体电离技术,精确地观测超紫外线阿秒脉冲.新方法利用参数化的计算公式确定每个测量得到的光电子的相关激光相位,利用解析性的光电子能谱解谱技术,一步重建脉冲的形状和具体的时间结构.新方法不需要大量的光电子能谱的时间分辨测量,也不需要冗长的迭代计算和实验数据拟合过程,能从每个测量得到的光电子能谱重建出超紫外线脉冲的时域特性.用参数化公式从脉冲的能量带宽值计算得到脉冲重建结果的时间不确定性(即时间误差).由于变换方程建立了超紫外线脉冲时间特性、重要的激光参数(峰值强度、电场包络形状、相位、载波-包络相位等)、原子或分子的电离能,以及光电子能谱之间的直接联系,可以用它从各个已知参数值计算出未知的参量.通过观测、分析某些参数和特定谱项的变化规律,可以研究超快速反应动力学过程中随时间变化的相关信息.  相似文献   

2.
随着超短脉冲激光技术的快速发展,人们观察超快动力学的视野从飞秒领域跨入到阿秒领域.由于电子绕氢原子核转1圈的时间大约为1.5×10-16 s,即150 as,因此阿秒激光脉冲的出现为人类提供了打开原子内部动态世界大门的钥匙,成为21世纪激光物理与技术最重要的进展之一.经过多年的不断创新和突破,阿秒脉冲产生技术从最初只能...  相似文献   

3.
自从2001年首次产生并测量了阿秒(attosecond,1 as=10-18 s)脉冲之后,高次谐波和阿秒脉冲在原子分子物理、材料科学等领域得到了广泛的应用.但是,由于气体高次谐波方法产生的阿秒脉冲效率较低,阿秒脉冲能量受限,限制了阿秒时间动力学研究的探测方式(目前主要是IR(infrared)+XUV(extrem...  相似文献   

4.
《科学通报》2021,66(8):847-855
随着激光技术的发展,激光的脉宽不断减小. 21世纪初,研究者首次突破飞秒的界限,在实验室产生了孤立的阿秒脉冲,由此打开了阿秒科学的大门.目前最短的激光脉宽达到了43 as,这为超快光学测量带来了前所未有的时间分辨率,阿秒科学也成为近20年来超快光学领域最重要的成就之一.虽然少周期驱动光、偏振选通、双色光等多种方案已经被用于调控阿秒脉冲的产生,许多调控阿秒光源椭偏率的方法也得到了证实,但如何提升阿秒脉冲的能量及产生圆偏振阿秒脉冲仍然是当前研究的热点.  相似文献   

5.
葛愉成 《科学通报》2007,52(4):388-393
报告了产生和测量阿秒及飞秒软X-射线脉冲的方法, 研究了高次谐波产生与激光相位之间的关系, 得到了时域内两个不同的辐射能量分布曲线. 这些结果有助于理解高次谐波产生的动力学过程. 可用脉冲光子能量的带宽值和两个参数化公式, 计算能量分布曲线的时间宽度. 为了更好地研究和模拟脉冲的传输及与介质的相互作用, 往往需要指定脉冲的光子能量和带宽等参数. 这两个公式在实验上可用于分析所选择脉冲的能量带宽值和时间宽度之间的关系. 所提出的变换方程和相关的光电子激光相位确定法, 能用来直接从光电子能谱得到阿秒及飞秒软X-射线脉冲的时间结构, 而不需要预先假设脉冲的频率分布和强度分布形状, 也不需要与实验测量数据进行拟合计算. 这些方程和方法是超快速测量的基础, 能用于评估超短X-射线脉冲光源的技术参数, 推动新一代光源技术和应用研究的进一步发展. 它们具有很宽的时间测量范围和极高的时间分辨率, 将使超快速测量以及飞秒和阿秒定时技术达到计量学的精度, 并使之发展成为标准化的测量方法, 进一步促成物理、化学及生物学新的研究高潮. 同时, 对阿秒和飞秒X-射线脉冲的应用及测量方面的理论和技术难题作了简要的讨论.  相似文献   

6.
叶蓬  魏志义 《自然杂志》2023,(6):410-416
2023年诺贝尔物理学奖被授予皮埃尔·阿戈斯蒂尼、费伦茨·克劳斯和安妮·吕利耶,以表彰他们在阿秒脉冲的实验实现上作出的先驱性贡献。从电磁波的概念孕育之初到光电效应的揭示,再到激光与高次谐波的发现,人类渐渐揭示了光与物质交织舞蹈的深层复杂性。阿秒脉冲技术如同一把精致的钥匙,解锁了之前无法触及的物理世界的极短时间尺度的奥秘。如今,阿秒脉冲技术已广泛应用于能源、信息科技、医学等领域的研究,为我们提供了一种强大的探测手段。随着技术的不断发展和完善,我们有理由相信,在不远的将来它将在基础科学的探索和工业的革新中,产生更多意想不到的突破和飞跃。  相似文献   

7.
少周期飞秒脉冲激光和桌面化极紫外阿秒光源的发展为在原子分子层面探究电子和原子核超快运动提供了飞秒到阿秒时间尺度的探测标尺。围绕双光子干涉阿秒拍频重构技术、阿秒条纹相机技术、阿秒钟技术以及阿秒瞬态吸收光谱技术等不同的阿秒测量谱学方法,主要梳理了飞秒和阿秒光脉冲在分子电离解离超快精密测控领域的最新进展,探讨了分子化学键断裂重组过程中的电子跃迁、电荷转移、电子-电子关联、电子-原子核振转耦合等超快动力学行为。  相似文献   

8.
赵增秀 《科学通报》2021,66(8):913-923
作为一种新型的超短极紫外/软X射线相干光源,阿秒脉冲推动了物质科学的新发展.它使得人们可以深入物质内部,对各种原子尺度的微观过程,以电子运动的自然时间尺度(1 as~10-18s)实现前所未有的时空分辨和超快调控.阿秒脉冲的产生和应用与强激光脉冲驱动的物质内电子亚周期的超快动力学密切相关.对其的研究,有助于在时域、相位...  相似文献   

9.
葛愉成 《科学通报》2008,53(17):2001-2010
电子显微镜和扫描隧道显微镜使人们能看到原子尺寸的微观世界图像, 极大地促进了化学、生命、材料、表面等学科的发展. 通过提高时间分辨率, 利用特定能量的飞秒和阿秒X射线脉冲来探测超快速化学反应, 如光合作用、DNA和蛋白质分子的合成和分解过程, 已经成为科学发展的前沿研究领域之一. 经过多年的探索, 作者在有关超短X射线脉冲产生(发光)、超快速测量(时间分辨率达到飞秒量级, 1 fs = 10-15 s, 即1千万亿分之一秒, 和阿秒量级, 1 as = 10-18 s, 即100亿亿分之一秒)等前沿领域取得了一些原创性的研究成果, 发现了原子在强激光场中产生飞秒和阿秒X射线脉冲的发射特性(即激光相位与X射线光子能量之间的关系), 揭示了发射特性的激光脉冲宽度依赖性和载波-包络相位(CEP)依赖性及其180°周期结构, 在理论上计算出了飞秒和阿秒X射线光电效应的量子增强现象及光电子能谱的干涉图像等. 提出了测量和应用CEP的新方法, 建立了应用于超快速测量的光电子能谱相位确定法, 找到了重建脉冲时间结构的光电子能谱微分变换方程、积分变换方程和比例变换方程. 利用这些先进的方法和变换方程, 能极大地提高超快速测量的实验效率和时间精度(理论均方根时间偏差为2 as). 这些研究成果为超快速测量实验研究和分子电影技术的发展奠定了重要的理论和技术基础.  相似文献   

10.
阿秒光源是21世纪新兴的光源,其由于短脉冲、宽光谱、高时空相干性、可调谐等特点而被广泛应用于多学科领域,可以同时从阿秒时间尺度和纳米空间尺度对微观超快过程进行观测.阿秒脉冲的产生机制与一般超快激光不同,目前较为成熟的途径是通过超快激光与气体作用的高次谐波极端非线性过程来获得,因此,阿秒脉冲产生从根本上依赖于驱动源的性能...  相似文献   

11.
多色组合激光场是一种产生超短孤立阿秒脉冲的可能选通方案.以800 nm飞秒激光作为基频场,利用遗传算法优化双色和三色激光场参数,根据超快光场相干合成技术得到了亚周期激光场.利用优化激光脉冲驱动氖原子即可产生超连续高次谐波并获得单个阿秒脉冲.在考虑宏观传播效应并采取合理参数(激光强度、气体压强、气体靶长度和位置)的情况下...  相似文献   

12.
付玉喜 《科学通报》2021,66(8):833-834
2001年,科学家首次在实验中产生了阿秒(10-18s)量级的超短光脉冲[1],从此打开了阿秒科学的大门.迄今为止,阿秒光源是人类所能掌握的唯一同时具有纳米空间分辨率和阿秒时间分辨率的全相干光源.由于其重大的科学意义和广泛的应用领域,部分欧洲国家和美国、日本、韩国等相继制定了阿秒光源研究计划,如美国将阿秒光源产生技术列...  相似文献   

13.
动态     
动态补偿阿秒脉冲啁啾的新方法强场高次谐波与阿秒脉冲是重要的前沿科学研究领域.阿秒脉冲能以前所未有的精度探测超快电子动力学,引起了人们的极大关注.目前,该领域最重要的科学目标之一就是要获得尽可能短的高次谐波阿秒脉冲.但是变换极限  相似文献   

14.
潘慧玲  王国利  周效信 《科学通报》2011,56(31):2561-2566
提出了使用两束同色激光场与中红外场形成的组合场驱动一维氦原子产生单个阿秒脉冲的方法. 通过数值模拟研究了氦原子在组合场驱动下发射高次谐波的特点, 谐波谱的截止位置可以拓展到Ip+12.6Up, 对第二平台区域不同范围内高次谐波叠加均能得到单个阿秒脉冲, 最短脉宽达42 as, 尤其是对平台区域的前端进行叠加, 不仅可以得到单个阿秒脉冲,而且与截止位置附近高次谐波构造的阿秒脉冲相比, 强度提高了3 个数量级. 经过经典和小波分析发现, 中红外场的加入不仅使高次谐波谱平台区域得到了扩展, 同时还抑制了电子长路径对高次谐波的贡献.  相似文献   

15.
超快驱动光源技术的不断进步激发了极紫外阿秒脉冲在原子分子的精密光谱学及超快动力学研究中的巨大潜力.本文回顾了高重复频率飞秒激光驱动高次谐波产生的发展历程,并以高重复频率极紫外光源的应用为切入点梳理了钛宝石激光系统、掺镱光纤激光系统以及掺镱全固态激光系统等驱动光源的参数特点、适用范围以及发展趋势等.最后,提出了用以驱动兆...  相似文献   

16.
封面说明     
正阿秒(10~(-18)s)光源是21世纪新兴的光源,是目前人类所能掌握的具有最短时间宽度的脉冲光源,是目前唯一同时具有纳米空间分辨率和阿秒时间分辨率的全相干光源.阿秒光源的应用覆盖了物理、化学、生物、材料、能源、超快信息等领域.利用阿秒光源的超高时间分辨率,可以对微观超快过程进行跟踪拍照,从根本上揭示这些领域的微观机理,为它们提供原始创新驱动力.  相似文献   

17.
21世纪以来,阿秒(attosecond,1 as=10-18 s)技术从诞生逐渐走向快速发展,为我们带来了前所未有的时间分辨(time-resolved)探测能力.以往飞秒(1 fs=10-15 s)泵浦-探测(pump-probe)超快光谱技术被广泛应用于材料的超快动力学研究,其脉宽和光子能量可以很好地研究由外层电...  相似文献   

18.
稳态声空化泡的高精度测量技术   总被引:3,自引:1,他引:2  
根据稳态声空化泡的周期颤动特征, 提出了一种高精度测量气泡大小随时间演化过程的方法.这种方法运用了可数字移相的脉冲激光照明技术和长距离显微技术, 通过激光器、声光调制器、脉冲发生器和长距离显微镜等实验仪器来实现. 一系列不同相位的气泡图像直接显示了声空化泡半径的时间演化规律. 实验结果与Rayleigh-Plesset 气泡动力学模型很好地拟合, 同时还得到重要的模型参数——声空化泡的平衡半径.  相似文献   

19.
为满足现代众多科学应用领域对低时域抖动、高重复频率飞秒光纤激光器的需求, 在实验基础上解决了若干技术难点, 并利用非线性偏振旋转(NPR)锁模原理, 成功得到了重复频率在100 MHz以上自由运转被动锁模的掺Er飞秒光纤激光器. 激光器输出脉冲的重复频率为101.94 MHz, 输出平均功率34 mW, 光谱谱宽25 nm, 傅里叶变换受限输出脉冲宽度为105 fs.  相似文献   

20.
马征宇  田永鸿 《科学通报》2023,(35):4764-4781
脑启发的脉冲神经网络被称为第三代人工神经网络,通过模拟神经动力学、事件驱动等计算特性捕捉时序信息和节能高效地进行计算,为人工智能领域的发展提供了新范式.大脑惊人的信息处理能力很大程度上归功于其庞大的网络规模和复杂的网络连接.构建大规模类脑神经网络为脑启发式的人工智能、神经形态计算以及多应用领域带来了突破性的进展.本文首先根据现有的研究,分类介绍了脉冲神经元模型、大规模脉冲神经网络模型与算法、深度训练框架和神经形态芯片等3个方面的计算原理和最新的研究进展,指出了目前大规模类脑神经网络研究的进展和存在的问题,随后重点论述了大规模类脑网络的神经形态视觉应用,包括神经形态视觉重构、极端场景目标检测等.最后,在总结已有研究成果的基础上,对该领域的研究现状给出了若干结论,同时指出了仍然存在的一些问题,并对未来研究的需求、期待与发展趋势进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号