首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TiAlN-MoS2/TiAlN硬质润滑膜研究   总被引:6,自引:0,他引:6  
在NCUPP技术沉积的TiN-MoS2/TiN复合膜中添加A1元素并改变部分沉积工艺,可以在1Cr18Ni9Ti基体上沉积出TiAlN-MoS2/TiAlN硬质润滑膜.利用SEM,XPS等手段研究涂层的成分、微观结构等.通过摩擦学试验测定其结合强度等性能.结果表明,在钻头上沉积TiAlN-MoS2/TiAlN硬质膜,可使其在钻削过程中具有优异的耐磨、减摩和耐高温等性能,从而大幅度提高了刀具的使用寿命.  相似文献   

2.
应用闭合场非平衡磁控溅射离子镀技术在高速钢和单晶硅基体上制备了一组随基体偏压变化的CrTiAlN梯度镀层,并测试了其摩擦学性能。结果表明,随偏压的增大,镀层的厚度、硬度、膜基结合强度和耐磨性能表现出先升后降、摩擦系数较低、具有良好的韧性;在-75 V左右偏压下沉积的镀层具有最佳的综合性能。通过XRD、SEM的分析表明,由CrN、TiN、AlN、Cr和Ti2N等微晶组成的复合镀层,晶粒细小,属于纳米级颗粒,从而使镀层具有良好的摩擦学性能。  相似文献   

3.
新型TiCN涂层钻头的磨损机理   总被引:4,自引:0,他引:4  
以M35钴高速钢为基体材料开发出新型TiN、TiCN和TiAlN涂层钻头,通过切削奥氏体不锈钢1Crl8Ni9Ti对比试验发现,TiCN涂层钻头的使用寿命最长、磨损形态最好.为了进一步揭示TiCN涂层的磨损机理,以该新型钻头在加工过程中刀具表面成分变化动态跟踪的方式,分析TiCN涂层钻头在切削过程中成分变化规律和后刀面的磨损过程,归纳出了TiCN涂层钻头的磨损机理并解释了该涂层在加工不锈钢时所表现出优良切削性能的原因.研究结果对奥氏体不锈钢加工钻头的开发、钻削加工参数的优化具有指导意义.  相似文献   

4.
本文利用显微硬度和划痕粘附性测量技术,对采用HCD方法涂镀在高速钢上的TiN镀层的力学性能进行了研究。结果表明,TiN镀层的显微硬度(Hv)、超显微硬度(UMH)和临界载荷(L_c),受基体偏压、氮气分压和镀层厚度的影响,镀层的择优取向强烈地影响着镀层的显微硬度,在一定的值域内,镀层内应力增加,临界载荷下降。 讨论了影响临界载荷的各种因素,确定了制备具有优良力学性能的TiN镀层的工艺参数。  相似文献   

5.
ZrO2-ZiCrAl系功能梯度热障涂层界面残余热应力研究   总被引:5,自引:0,他引:5  
研究用等离子喷涂方法制备Zro2-NiCrAl系功能梯度热障涂层的不同梯度过渡层之间,以及与基体之间界面的残余热应力和功能梯度热障涂层厚度、组分对残余热应力的影响.方法来用热弹性有限元方法.结果所设计的功能梯度热障涂层的界面残余热应力得到有效缓和.结论对于所要保护的基体,可用有限元数值分析结果选择适当的功能梯度材料体系.  相似文献   

6.
Monolayer and bilayer coatings of TiAlN, AlCrN, and AlCrN/TiAlN were deposited onto tungsten carbide inserts using the plasma enhanced physical vapor deposition process. The microstructures of the coatings were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SEM micrographs revealed that the AlCrN and AlCrN/TiAlN coatings were uniform and highly dense and contained only a limited number of microvoids. The TiAlN coating was non-uniform and highly porous and contained more micro droplets. The hardness and scratch resistance of the specimens were measured using a nanoindentation tester and scratch tester, respectively. Different phases formed in the coatings were analyzed by X-ray diffraction (XRD). The AlCrN/TiAlN coating exhibited a higher hardness (32.75 GPa), a higher Young’s modulus (561.97 GPa), and superior scratch resistance (LCN = 46 N) compared to conventional coatings such as TiAlN, AlCrN, and TiN.  相似文献   

7.
采用高功率脉冲磁控溅射(HIPIMS)技术耦合多弧离子镀技术,在钛合金和304不锈钢基体表面沉积高致密TiAlN/Me多层纳米复合膜层,通过SEM、XRD、XPS等方法对涂层的宏微观结构进行表征,在500 ℃高温的固态盐膜环境下,研究不同金属子层种类对涂层高温热腐蚀能力的影响规律.结果表明:TiAlN/Ti多层涂层孔隙率低至0.049 %,以点蚀为主要腐蚀形式的涂层热腐蚀面积占比为2.948%,分别达到304不锈钢和Ti-6Al-4V钛合金基体耐腐蚀能力的24.046和23.041倍.TiAlN/TiAl涂层由于涂层表面缺陷和层间缺陷分布广泛,涂层腐蚀面积占比达到67.090 %.TiAlN/Ti比TiAlN/TiAl多层纳米复合膜层有更优的高温热腐蚀性能.   相似文献   

8.
Ti(C,N)基金属陶瓷是以 TiC、TiN、Ti(C,N)等为基,Ni/Co为粘结剂,并添加 WC、Mo2C、TaC、VC 等碳化物改善其组织性能,采用粉末冶金方法制备的多相固体材料,具有高红硬性、高耐磨性、低摩擦系数和低热导率,高的化学稳定性等优点。Ti(C,N)基金属陶瓷刀具对高速加工中软钢有很大的优越性:被加工工件表面尺寸精度和光洁度高,可实现以车代磨。在切削加工中,刀具的性能对加工表面质量和加工效率有着重大的影响。涂层具有高的耐磨性、耐热性、高的化学稳定性等优点,可使切削刀具的使用寿命大幅度提高。当前80%–90%以上的切削刀具都会涂层,而这些涂层工艺主要是针对硬质合金而设计的。金属陶瓷被视为硬质合金未来最有潜力的替代品。要实现Ti(C,N)基金属陶瓷对硬质合金的替代,Ti(C,N)基金属陶瓷的可涂层性、涂层过程中的生长机理以及金属陶瓷基体与涂层的匹配性需要系统的研究。涂层与基体材料两者总是相互影响,基体的化学成分与结构会直接影响涂层的形核生长,而涂层的结合强度与硬度等性能直接决定了涂层能否被运用。鉴于此,本文制备了不同WC含量的TiAlN涂层金属陶瓷,并采用微观组织观察、结合强度与纳米压痕检测和切削加工试验研究了不同WC含量的金属陶瓷基体对TiAlN涂层的微观结构与性能的影响。结果表明沉积在不同基体上的TiAlN涂层具有柱状晶粒结构。且随着WC的增加,TiAlN的强度比I(111)/I(200)和附着力逐渐增大。当基体中没有WC时,TiAlN涂层的择优取向为(200)晶面。 随着WC的加入,TiAlN涂层的择优取向变为(111)和(200)晶面。涂层与基体的结合强度最大的区别在于基体的微观结构和成分。含15wt% WC的金属陶瓷基体涂层的H/EH3/E2最高,耐磨性最好。  相似文献   

9.
离子束辅助沉积法制备TiAlN/TiB2纳米多层膜的研究   总被引:1,自引:0,他引:1  
运用离子束辅助沉积法(IBAD)制备了一系列具有不同调制比例的TiAlN/TiB2纳米多层膜,利用X射线衍射(XRD)、扫描电子显微镜(SEM)和纳米压痕等表征手段研究了薄膜调制比例对其硬度、内应力和膜基结合力等力学性质的影响.结果表明:随着调制比例从8∶1变化到25∶1,多层膜的硬度在29~34 GPa之间变化,所有多层膜的硬度均高于TiAlN和TiB2两种各体层材料通过混合法则得的结果,结合XRD结果分析认为,TiAlN(111)择优取向是薄膜硬度升高的一个重要原因.  相似文献   

10.
研究了成分梯度对Ti-Al-N 系功能梯度薄膜结合强度的影响.实验结果表明:Ti-Al-N 系功能梯度薄膜的结合强度高于均质薄膜,且随着梯度的增加结合强度逐渐增加,这是由于梯度能够缓和应力以及薄膜中残余应力降低的缘故  相似文献   

11.
采用阴极弧蒸发涂层工艺在均质和梯度硬质合金基体上沉积TiN涂层;运用金相观察、XRD检测和SEM分析,研究基体梯度结构对TiN涂层硬质合金抗氧化性能的影响,对涂层硬质合金氧化开裂过程进行分析。研究结果表明:基体结构梯度化后,TiN涂层的表面形貌由平整状变为网状结构;梯度基体表面韧性区的存在提高了TiN涂层硬质合金的抗氧化性能;在800℃氧化2 h后,2种涂层硬质合金边缘开裂,生成大量的氧化物;梯度基体涂层硬质合金开裂程度比均质基体涂层硬质合金的小。  相似文献   

12.
相同工艺条件下,在45#钢表面多弧离子镀CrN,TiN,(Zr,Ni)N和TiN Ti(C,N)硬质涂层,利用磨损失重法及划痕试验评价了不同涂层的耐磨性,结果表明,CrN涂层具有最优异的耐磨性,另外,利用SEM和XRD分别研究了CrN涂层/45#钢的剖面形貌和CrN涂层的相组成。  相似文献   

13.
反应等离子喷涂TiN涂层电化学腐蚀行为   总被引:4,自引:0,他引:4  
利用电化学阻抗谱等电化学方法及扫描电镜(SEM)技术,研究了反应等离子喷涂TiN涂层在模拟海水中的电化学腐蚀行为. 研究结果表明:TiN涂层的自腐蚀电位高于基体,涂层对基体能起到良好的腐蚀屏蔽作用;腐蚀介质通过涂层的通孔、微裂纹等缺陷渗入涂层与基体的界面腐蚀基体,从而使涂层电阻下降、电容增加,所产生的腐蚀产物在一定程度上可以抑制腐蚀反应的进行,但不会阻止基体局部腐蚀的继续进行. 涂层的孔隙是造成涂层电化学腐蚀的主要原因.  相似文献   

14.
用反应磁控溅射方法制备了TiAlN薄膜,结构分析表明,当Ti的含量小于0.25时,TiAlN薄膜是Al基氮化物的闪锌矿结构,但晶格常数随Ti原子含量的增加而增大.X射线光电子能谱分析表明,TiAlN薄膜有与AlN和TiN不同的电子结构特征.  相似文献   

15.
采用双层辉光离子渗金属技术,在硬质合金基体表面上制备了氮化钛(TiN)薄膜,通过微观结构和显微硬度分析,研究了基体温度对TiN薄膜性能的影响.实验结果表明:所有TiN样品均具有面心立方结构,并且薄膜生长的择优取向、晶粒尺寸、晶面间距、晶格常数和微观硬度等都与基体温度密切相关.当基体温度为650~780℃时,TiN薄膜具有最小的晶粒尺寸(26.9 nm)和最大的显微硬度(2204 HV).  相似文献   

16.
利用射频磁控溅射技术在室温下合成了具有纳米调制周期的TiB2/TiAlN多层膜.分别采用X射线衍射仪(XRD)、表面轮廓仪、纳米力学测试系统和多功能材料表面性能实验仪分析了调制比对TiB2/TiAlN纳米多层膜结构和机械性能的影响.结果表明:大部分多层膜的纳米硬度和弹性模量值均高于两种个体材料混合相的值,在调制比为t ...  相似文献   

17.
采用多弧离子镀工艺在40Cr表面制备了TiAlN/TiN复合镀膜,利用UMT-2摩擦磨损实验机考察了TiAlN/TiN膜层的承载能力和摩擦学性能,通过扫描电子显微镜观察了磨损试件的表面形貌,应用X射线能谱仪分析了磨痕中心区元素及其含量,通过40Cr基体和TiAlN/TiN膜在摩擦系数和磨损量方面的比较来评价TiAlN/TiN复合膜层的摩擦学性能。结果表明:TiAlN/TiN涂层与基体间的结合力是影响涂层承载能力的主要因素之一,TiAlN/TiN复合镀层的摩擦学性能优于40Cr基体,TiAlN/TiN复合镀层的减摩、耐磨性能优越,并能成功地抵抗磨粒磨损和粘着磨损。  相似文献   

18.
在垂直冷壁CVD反应器中进行了文题的探索性研究。以二乙胺基钛(Ti(NEt_2)_4)为源,在不锈钢或硬质合金基体上完成了氮化钛(TiN)和碳氮化钛(Ti(C,N))硬质薄膜低温下的淀积。发现(TiN)和(Ti(C,N))分别在773K和973K下形成;在操作范围内整个反应器流场由自由对流控制;反应过程由表面过程控制;反应活化能为235 kJ/mol;二乙胺基钛反应级数为1级。进行了热力学计算,提出了反应历程假设。结果表明:用二乙胺基钛进行MOCVD淀积含钛硬质薄膜可以降低温度,以扩大基体的选用范围,为获得硬质薄膜提供了一条新的途径。  相似文献   

19.
采用不同Si含量的TiAlSi复合靶,在Si基底片上用射频磁控溅射工艺沉积了TiAlSiN纳米复合涂层,采用X射线衍射仪(XRD)、高分辨透射电子显微镜(HRTEM)和纳米压痕技术研究了Si含量对TiAlSiN涂层的微观结构和力学性能的影响.结果表明:TiAlSiN涂层内部形成了Si3N4界面相包裹TiAlN纳米等轴晶粒的纳米复合结构.随着Si含量的增加,TiAlSiN涂层的结晶程度先增加后降低,涂层内部的晶粒尺寸先减小后趋于平稳,涂层的力学性能先升高后降低.当Si与TiAl原子比为3:22时获得的最高硬度和弹性模量分别为37.1 GPa和357.3 GPa.  相似文献   

20.
通过射频磁控溅射在单晶硅(111)和硬质合金衬底上制备Si掺杂的TiSiN纳米复合涂层。采用双靶溅射技术,保持Ti靶功率不变,改变Si靶的功率以获得Si含量不同的TiSiN纳米复合涂层。用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和显微硬度计表征TiSiN涂层的结构、成分、形貌和硬度。研究结果表明,Si靶溅射功率对TiSiN涂层的结构和力学性能影响较大。随着Si靶溅射功率的增加,TiN晶粒特征峰由(111)向(200)转变,在20 W的Si靶溅射功率下(111)面取向最优。涂层厚度随着功率的增大呈现先增大后减小的趋势。Si以非晶相Si_3N_4的形式存在;随着Si含量的增加表面晶粒得到细化,在20 W的Si靶溅射功率下,涂层晶体生长致密光滑,涂层硬度高达2 600 HV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号