首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
基于激光淬火的二维温度场理论,通过对温度场分布公式的拟合简化,出激光淬火硬层理论宽度及深度计算公式,讨论了产生最大硬层深度和宽度的条件。从理论上说明了激光淬火工艺参数对淬硬层深度和宽度的影响。在对QT800-2进行了激光淬火实验中,淬火硬化层实测宽度和深度的实验值与理论计算值之间的误差大约为10%,得到了令人满意的结果。  相似文献   

2.
为探讨钢的激光淬火工艺参数对淬硬层深的影响 ,本文对T10钢进行了激光淬火试验。结果表明 :淬硬层深随激光功率的增大、扫描速度的降低、激光束重叠尺寸的增大而增大 ,其中扫描速度对淬硬层深的影响相对较大 ;在功率 (0 .9~ 1)kW ,扫描速度 2 0~ 30mm s ,光斑直径 3mm ,激光束重叠 1.0~ 1.5mm的工艺参数范围内 ,可获得不小于 0 .5mm的淬硬层深 ,表面硬度达HV10 95左右 ;此外还发现 ,激光淬火前用碳黑进行黑化处理 ,有可能在T10钢表层形成亚共晶组织。  相似文献   

3.
激光淬火齿轮和渗碳淬火齿轮X射线衍射分析   总被引:1,自引:0,他引:1  
在40CrNiMoA钢激光相变硬化基础工艺研究的基础上,通过采用齿轮激光热处理关键技术,获得了沿齿廓均匀分布的理想硬化层。对渗碳淬火齿轮(20Cr2Ni4A)和激光淬火齿轮(40CrNiMoA)进行了齿轮X射线衍射分析。试验表明,激光淬火齿轮淬硬层中微晶尺寸明显小于渗碳淬火齿轮的微晶尺寸,激光淬火齿轮淬硬层的残余奥氏体含量较高,而其位错密度比渗碳淬火齿轮高一个数量级。从不同角度证实了激光淬火齿轮接触疲劳强度高于渗碳淬火齿轮接触疲劳强度。  相似文献   

4.
利用ANSYS有限元分析软件,采用三维非线性有限元方法对柴油机曲轴中频淬火瞬态温度场进行了模拟计算;利用临界冷却速度为判据预测了曲轴的淬硬层深度,计算结果与实测结果吻合较好.  相似文献   

5.
大型曲轴的激光淬火   总被引:1,自引:0,他引:1  
本文对大型曲轴激光淬火工艺、表面硬度、淬硬层深、表层相变规律等进行了探讨,并给出了实际应用的有关数据。  相似文献   

6.
对45钢锻热淬火终锻后空气预冷对奥氏体晶粒尺寸、马氏体形貌及精细结构以及工件淬硬层深度的影响进行了研究。结果表明,45钢锻件终锻温度超过900℃,奥氏体即可在锻造过程中全部或部分完成动态再结晶。空气预冷会使完成动态再结晶的奥氏体晶粒急剧长大,但30S后长大速率大幅度减弱。空气预冷对马氏体板条中位错的密度及组态以及板条束和板条宽度影响不大。值得强调的是,适当预冷可使工件一定厚度的次表层在淬冷过程中的冷速增大,从而使淬硬层加深。有利于某些工件服役寿命的提高。计算机模拟计算结果确认。预冷使淬火工件淬硬层深度增大的现象具有普遍意义。  相似文献   

7.
减振器连杆高频感应淬火工艺的温度场有限元模拟   总被引:2,自引:0,他引:2  
对不同感应淬火工艺处理的连杆进行了其表层显微硬度测试.应用有限元分析软件AN—SYS/Thermal对高频感应淬火工艺过程中的温度场进行了模拟.模拟分3个部分:感应加热部分、冷却液强制对流喷射淬火部分和空冷部分.分析结果表明,连杆的淬硬层深度与速功比(连杆移动速度与感应输出功率的比值)成线性关系.通过有限元分析计算,证明感应淬火处理连杆表层温度沿深度方向的分布与其硬度分布是一致的,并且速功比相同的连杆淬火温度场一致.模拟结果得到了连杆淬火横截面内各层温度随时间的变化曲线,对制定合理的感应淬火工艺具有重要的作用.  相似文献   

8.
研究了高铬铸铁磨球在不同介质淬火的冷却曲线、温度场、淬火裂纹、断面上硬度分布以及φ60磨球的跌落冲击试验.结果表明空淬未能淬硬,水淬产生裂纹,油淬对小于φ100的磨球不产生裂纹.采用有机淬火介质A1得到良好的综合机械性能,无机介质B1经适当整调也能满足要求。  相似文献   

9.
研究了激光热处理对H13钢组织与性能的影响,研究表明:经优化处理的H13钢激光淬火淬硬层厚度达到0.62mm,回火稳定性提高40℃。同时,激光热处理耐磨性比软氮化和普通热处理都明显提高。模具使用寿命比普通热处理提高5倍。  相似文献   

10.
探讨GCr15SiMn轴承钢840℃油淬火后,分别在260℃、350℃、450℃、550℃回火,得到不同的原始组织,再进行激光淬火。发现260℃回火状态,表面组织为粗大的针状马氏体,硬度值低;而350℃、450℃、550℃回火状态,表面组织为“隐晶马氏体”,硬度值高,其中350℃回火表面硬度值高达Hv=1096,淬硬层深度可达1mm。  相似文献   

11.
MoCu球铁激光淬火过程温度场的数值计算   总被引:6,自引:1,他引:6  
根据激光淬火过程的特点及复杂性,提出用有限元方法计算激光淬火过程中温度场及组织分布的传热学数学模型;在计算中对热物性值随温度的变化进行了分段线性回归处理;激光淬火属快速加热范畴,奥氏体化点相应提高.相变潜热则根据相变量的多少以温升、温降的形式加以处理.以MoCu球铁为例对不同激光处理参数下的温度场及组织分布进行了计算及实验验证.  相似文献   

12.
就QT60-2的黑化方式及激光工艺参数进行了优化选择,建立起硬化层的深度和宽度与工艺参数间的回归方程,对C4102型柴油机凸轮轴进行了激光热处理,处理后经抛光或精磨后即可装机运行,为设计微机控制的激光处理专门化机床,提供稳定而可靠工艺依据。  相似文献   

13.
对W18Cr4V钢激光表面淬火工艺参数进行了试验研究.试验结果表明,激光表面淬火工艺参数d=1.5mm,q=124W/mm2,v=18mm/s时,激光淬火加热温度处于Ac1~T熔范围之内.可以得到无表面熔化的淬火层,淬火层深度0.25mm,淬火层组织为细针状马氏体+碳化物+残余奥氏体,显微硬度HV0.1950~1050  相似文献   

14.
通过改变激光功率和扫描速度等参数,研究其对45钢激光表面强化组织与性能的影响。实验结果表明,单道扫描时,当保持扫描速度v为15mm/s时,增加激光功率P,可增加硬化层的深度,最大深度可达1.5mm以上。另外,P/v比值越大,硬化层深度越大;而当P/v比值保持不变时,硬化层深度随着激光功率的增加而增加,其中激光功率从1.2kW到1.8kW时,硬化层深度值增加较快;当激光功率大于1.8kW后,深度值的增长随功率增加变缓;而且硬化层的硬度都达到700HV以上,远高于基体的硬度。在激光多道搭接扫描时,激光能量的再次输入会导致靠近搭接区的前一道硬化层产生回火软化,其硬度接近基体的硬度。  相似文献   

15.
齿轮激光淬火技术替代常规渗碳工艺   总被引:3,自引:0,他引:3  
齿轮表面质量的好坏直接影响传动部件的质量和寿命 ,为此需对齿轮表面进行强化处理 ,传统的处理方法如渗碳等存在着诸如变形较大 ,硬化层沿齿廓分布不均等缺陷 ,从而影响齿轮的使用寿命 通过分析可替代常规齿轮渗碳淬火的激光齿面淬火新技术研究的意义及经济价值 ,着重讨论了齿面激光淬火的关键技术———表面预处理涂层与方法、激光扫描方式 比较了激光淬火与渗碳工艺的硬度、硬化层深度及抗点蚀疲劳性能等重要指标 结果表明 :采用激光淬火齿面技术不仅能提高生产率 ,降低成本 ,而且对于某些材料的齿轮完全能代替渗碳淬火工艺  相似文献   

16.
激光焊接温度场解析计算   总被引:1,自引:0,他引:1  
提出了一种激光焊接温度场的解析计算方法,将激光作用下形成的小孔区域作为均匀吸收介质,导出介质热源的功率分布三维解析式,以及由该热源引起的无限大薄板的温度场分布解析式。计算和实验验证该解析式的正确性,理论计算和实验结果符合较好,当小孔深度为零时,介质热源即为表面热源,所得到的解析式与其它热传导焊理论解析式一致。  相似文献   

17.
42CrMo钢泵筒内壁激光相变硬化组织模拟   总被引:1,自引:1,他引:0  
采用有限元软件SYSWELD建立三维模型,考虑相变潜热及材料热物理性能随温度的变化,将温度场和相变模型进行耦合,对泵筒内壁激光相变硬化组织转变过程及硬度分布进行数值模拟。结果表明:激光相变硬化是一个快速加热和冷却的过程;在加热过程中激光照射区域组织转变为奥氏体,而在冷却过程中奥氏体发生马氏体转变;激光相变硬化处理后,完全淬火区主要以马氏体为主,其最大体积分数可达90%左右。相变区硬度提高约2倍,最大可达540.6 HV0.2;相变区的组织及硬度模拟结果与试验结果吻合较好。  相似文献   

18.
The quenching process of garnett wire teeth of metallic card clothing heated by flame was researched by use of 3-D finite element method and the equation of boundary condition was established by making use of a model of artificial neural network. The transient temperature field, phase transformation in the heating process, the quenching microstructures and the hardness distribution on quenched garnett wire teeth of metallic card clothing were simulated. The result shows that the maximum error of the hardness between the simulative value and the actual measuring value is 8.0% on only one testing point and errors are all less than 3.0% on other testing points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号