首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transthyretin (TTR) is an extracellular protein able to deposit into well-defined protein aggregates called amyloid, in pathological conditions known as senile systemic amyloidosis, familial amyloid polyneuropathy, familial amyloid cardiomyopathy and leptomeningeal amyloidosis. At least three distinct partially folded states have been described for TTR, including the widely studied amyloidogenic state at mildly acidic pH. Here, we have used fluorescence resonance energy transfer (FRET) experiments in a monomeric variant of TTR (M-TTR) and in its W41F and W79F mutants, taking advantage of the presence of a unique, solvent-exposed, cysteine residue at position 10, that we have labelled with a coumarin derivative (DACM, acceptor), and of the two natural tryptophan residues at positions 41 and 79 (donors). Trp41 is located in an ideal position as it is one of the residues of β-strand C, whose degree of unfolding is debated. We found that the amyloidogenic state at low pH has the same FRET efficiency as the folded state at neutral pH in both M-TTR and W79F-M-TTR, indicating an unmodified Cys10–Trp41 distance. The partially folded state populated at low denaturant concentrations also has a similar FRET efficiency, but other spectroscopic probes indicate that it is distinct from the amyloidogenic state at acidic pH. By contrast, the off-pathway state accumulating transiently during refolding has a higher FRET efficiency, indicating non-native interactions that reduce the Cys10–Trp41 spatial distance, revealing a third distinct conformational state. Overall, our results clarify a negligible degree of unfolding of β-strand C in the formation of the amyloidogenic state and establish the concept that TTR is a highly plastic protein able to populate at least three distinct conformational states.  相似文献   

2.
Apolipoprotein E (apoE) ɛ4 allele is a genetic risk factor for late-onset familial and sporadic Alzheimer’s disease (AD). In the central nervous system, apoE is secreted mainly by astrocytes as a constituent of high-density lipoproteins. A recent study using apoE knockout mice provided strong evidence that apoE promotes cerebral deposition of amyloid β protein (Aβ). However, no clear explanation of the pathogenesis of apoE-induced AD has been provided. Here we discuss two possible mechanisms by which apoE might enhance Aβ deposition. One is the intracellular pathway in which apoE is internalized by neurons and induces lysosomal accumulation of Aβ and amyloidogenic APP (amyloid precursor protein) fragments, leading to neuronal death. The other is the extracellular pathway in which apoE-containing lipoproteins are trapped by Aβ1–42 deposits mobilizing soluble Aβ peptides and consequently enlarge amyloid plaques. These two mechanisms may operate at different stages of AD pathogenesis and suggest a chaperone-like function for the apoE molecule. Received 4 February 1999; received after revision 9 April 1999; accepted 23 April 1999  相似文献   

3.
Transthyretin (TTR) is a functional protein in the pancreatic β-cell. It promotes insulin release and protects against β-cell death. We now demonstrate by ligand blotting, adsorption to specific magnetic beads, and surface plasmon resonance that TTR binds to glucose-regulated proteins (Grps)78, 94, and 170, which are members of the endoplasmic reticulum chaperone family, but Grps78 and 94 have also been found at the plasma membrane. The effect of TTR on changes in cytoplasmic free Ca2+ concentration ([Ca2+]i) was abolished if the cells were treated with either dynasore, a specific inhibitor of dynamin GTPase that blocks clathrin-mediated endocytosis, or an antibody against Grp78, that prevents TTR from binding to Grp78. The conclusion is that TTR binds to Grp78 at the plasma membrane, is internalized into the β-cell via a clathrin-dependent pathway, and that this internalization is necessary for the effects of TTR on β-cell function.  相似文献   

4.
Transthyretin (formerly called prealbumin) plays important physiological roles as a transporter of thyroxine and retinol-binding protein. X-ray structural studies have provided information on the active conformation of the protein and the site of binding of both ligands. Transthyretin is also one of the precursor proteins commonly found in amyloid deposits. Both wild-type and single-amino-acid-substituted variants have been identified in amyloid deposits, the variants being more amyloidogenic. Sequencing of the gene and the resulting production of a transgenic mouse model have resulted in progress toward solving the mechanism of amyloid formation and detecting the variant gene in individuals at risk. Received 23 January 2001; received after revision 4 April 2001; accepted 30 April 2001  相似文献   

5.
Monogenetic determinants of Alzheimer's disease: APP mutations   总被引:2,自引:0,他引:2  
Mutations within exons 16 and 17 of the β-amyloid precursor protein (APP) gene were the first known cause of familial Alzheimer's disease. These mutations are rare and have been reported in a handful of families exhibiting autosomal dominant inheritance of Alzheimer's disease with age of onset around 50 years. In vitro and in vivo studies have demonstrated that each of these mutations alters proteolytic processing of APP, resulting in an increase in the production of Aβ42, a highly fibrillogenic peptide, that spontaneously aggregates and deposits in the brain. Transgenic mice carrying a mutant human APP gene also show age-dependent β-amyloid (Aβ) deposition in the brain. The rate of deposition in these mice can be modified by apolipoprotein E expression.  相似文献   

6.
Amyloid fibrils occur inside the human body, associated with ageing or a group of diseases that includes, amongst others, Alzheimer’s disease, atherosclerosis and type II diabetes. Many natural polypeptide chains are able to form amyloid fibrils in vivo or in vitro, and this ability has been suggested to represent an inherent consequence of the chemical structure of the polypeptide chain. Recent literature has provided a wealth of information about the structure of aggregates, precipitates, amyloid fibrils and other types of fibrillar polypeptide assemblies. However, the biophysical meaning associated with these terms can differ considerably depending on the context of their usage. This overview presents a structural comparison of amyloid fibrils and other types of polypeptide assemblies and defines amyloid fibrils, based on structural considerations, as fibrillar polypeptide aggregates with a cross-β conformation. Received 1 March 2007; received after revision 15 March 2007; accepted 25 April 2007  相似文献   

7.
Protein amyloid is often deposited in connection with neurodegenerative diseases. Such deposits generally possess three principal drawbacks: cytotoxicity, lack of spatial control in their deposition and structural polymorphism. These are typical features of biologically non-optimized systems which have not been exposed to evolutionary pressure. Nevertheless, Nature uses the cross-beta self-organizing principle in many structural contexts where a strong but pliable material is needed. Functional amyloid is found in humans, invertebrates, fungi and, not least, bacteria, in which amyloid may be the rule rather than the exception. Detailed case studies reveal how directed nucleation can use tailor-made proteins optimized to assume a specific amyloid conformation, leading to remarkably robust assemblies. This makes it highly challenging to purify and analyze the products formed in vivo. We contrast pathogenic and in-vitro-formed amyloid with functional amyloid, paying particular reference to bacterial amyloid, and discuss challenges and perspectives in identifying and characterizing this class of protein.  相似文献   

8.
The Alzheimer’s amyloid precursor protein (APP) belongs to a conserved gene family that also includes the mammalian APLP1 and APLP2, the Drosophila APPL, and the C. elegans APL-1. The biological function of APP is still not fully clear. However, it is known that the APP family proteins have redundant and partly overlapping functions, which demonstrates the importance of studying all APP family members to gain a more complete picture. When APP was first cloned, it was speculated that it could function as a receptor. This theory has been further substantiated by studies showing that APP and its homologues bind both extracellular ligands and intracellular adaptor proteins. The APP family proteins undergo regulated intramembrane proteolysis (RIP), generating secreted and cytoplasmic fragments that have been ascribed different functions. In this review, we will discuss the APP family with focus on biological functions, binding partners, and regulated processing.  相似文献   

9.
Immunoglobulin light chains are the precursor proteins for fibrils that are formed during primary amyloidosis and in amyloidosis associated with multiple myeloma. As found for the approximately 20 currently described forms of focal, localized, or systemic amyloidoses, light chain-related fibrils extracted from physiological deposits are invariably associated with glycosaminoglycans, predominantly heparan sulfate. Other amyloid-related proteins are either structurally normal, such as beta2-microglobulin and islet amyloid polypeptide, fragments of normal proteins such as serum amyloid A protein or the precursor protein of the beta peptide involved in Alzheimer's disease, or are inherited forms of single amino acid variants of a normal protein such as found in the familial forms of amyloid associated with transthyretin. In contrast, the primary structures of light chains involved in fibril formation exhibit extensive mutational diversity rendering some proteins highly amyloidogenic and others non-pathological. The interactions between light chains and glycosaminoglycans are also affected by amino acid variation and may influence the clinical course of disease by enhancing fibril stability and contributing to resistance to protease degradation. Relatively little is currently known about the mechanisms by which glycosaminoglycans interact with light chains and light-chain fibrils. It is probable that future studies of this uniquely diverse family of proteins will continue to shed light on the processes of amyloidosis, and contribute as well to a greater understanding of the normal physiological roles of glycosaminoglycans.  相似文献   

10.
Improper protein folding (misfolding) can lead to the formation of disordered (amorphous) or ordered (amyloid fibril) aggregates. The major lens protein, α-crystallin, is a member of the small heat-shock protein (sHsp) family of intracellular molecular chaperone proteins that prevent protein aggregation. Whilst the chaperone activity of sHsps against amorphously aggregating proteins has been well studied, its action against fibril-forming proteins has received less attention despite the presence of sHsps in deposits found in fibril-associated diseases (e.g. Alzheimer’s and Parkinson’s). In this review, the literature on the interaction of αB-crystallin and other sHsps with fibril-forming proteins is summarized. In particular, the ability of sHsps to prevent fibril formation, their mechanisms of action and the possible in vivo consequences of such associations are discussed. Finally, the fibril-forming propensity of the crystallin proteins and its implications for cataract formation are described along with the potential use of fibrillar crystallin proteins as bionanomaterials. Received 13 June 2008; received after revision 29 July 2008; accepted 05 August 2008  相似文献   

11.
The importance of cerebral amyloid deposition in the mechanism of neurodegeneration is still debatable. Classic arguments are usually centered on amyloid β(Aβ) and its role in the neuronal loss characteristic of Alzheimer’s disease, the most common form of human cerebral amyloidosis. Two non-Aβ cerebral amyloidoses, familial British and Danish dementias (FBD and FDD), share many aspects of Alzheimer’s disease, including the presence of neurofibrillary tangles, parenchymal preamyloid and amyloid deposits, cerebral amyloid angiopathy and a variety of amyloid-associated proteins and inflammatory components. Both early-onset conditions are linked to specific mutations at or near the stop codon of the chromosome 13 gene BRI2 that cause generation of longer-than-normal protein products. Furin-like processing of these longer precursors releases two de novo-created peptides, ABri and ADan, which deposit as amyloid fibrils in FBD and FDD, respectively. Due to the similar pathology generated by completely unrelated amyloid subunits, FBD and FDD, collectively referred to as chromosome 13 dementias, constitute alternative models for studying the role of amyloid deposition in the mechanism of neuronal cell death.Received 4 March 2005; received after revision 24 April 2005; accepted 26 April 2005  相似文献   

12.
High values for the free thyroxine fraction were found in the serum of 24 patients during the early phase of myocardial infarction. A strong correlation between the free thyroxine fraction and free fatty acids suggests that they compete for protein binding sites. The increase in free thyroxine may have undesirable effects on myocardial oxygen demand during acute myocardial infarction.  相似文献   

13.
Uteroglobin: a novel cytokine?   总被引:18,自引:0,他引:18  
Blastokinin or uteroglobin (UG) is a steroid-inducible, evolutionarily conserved, multifunctional protein secreted by the mucosal epithelial of virtually all mammals. It is present in the blood and in other body fluids including urine. An antigen immunoreactive to UG antibody is also detectable in the mucosal epithelia of all vertebrates. UG-binding proteins (putative receptor), expressed on several normal and cancer cell types, have been characterized. The human UG gene is mapped to chromosome 11q12.2 13.1, a region that is frequently rearranged or deleted in many cancers. The generation of UG knockout mice revealed that disruption of this gene causes: (i) severe renal disease due to an abnormal deposition of fibronectin and collagen in the glomeruli; (ii) predisposition to a high incidence of malignancies; and (iii) a lack of polychlorinated biphenyl binding and increased oxygen toxicity in the lungs. The mechanism(s) of UG action is likely to be even more complex as it also functions via a putative receptor-mediated pathway that has not yet been clearly defined. Molecular characterization of the UG receptor and signal transduction via this receptor pathway may show that this protein belongs to a novel cytokine/chemokine family.  相似文献   

14.
Deposition of amyloid β-protein (Aβ) in the brain is an early and invariant neuropathological feature of Alzheimer’s disease (AD). The current search for anti-AD drugs is mainly focused on modification of the process of accumulation of Aβ in the brain. Here, we review four anti-amyloidogenic strategies: (i) reduction of Aβ production, which has mainly been approached with secretase inhibition, (ii) promotion of the Aβ degrading catabolic pathway, including an Aβ degrading enzyme, neprilysin, (iii) immunotherapy for Aβ and (iv) inhibition of Aβ aggregation. We have reported that AD patients have a favorable molecular environment for Aβ aggregation and that various compounds, such as polyphenols, interfere with Aβ aggregation and destabilize preformed Aβ fibrils. Received 21 December 2005; received after revision 14 February 2006; accepted 29 March 2006  相似文献   

15.
A relationship is proposed for calculating the concentration of free serum thyroxine using the measured values of thyroxine and thyroxine-binding globulin total concentrations. This calculation has been performed on a population of 335 patients. A good discrimination of the different thyroid diseases has been obtained.  相似文献   

16.
Inflammation occurs in many amyloidoses, but its underlying mechanisms remain enigmatic. Here we show that amyloid fibrils of human lysozyme, which are associated with severe systemic amyloidoses, induce the secretion of pro-inflammatory cytokines through activation of the NLRP3 (NLR, pyrin domain containing 3) inflammasome and the Toll-like receptor 2, two innate immune receptors that may be involved in immune responses associated to amyloidoses. More importantly, our data clearly suggest that the induction of inflammatory responses by amyloid fibrils is linked to their intrinsic structure, because the monomeric form and a non-fibrillar type of lysozyme aggregates are both unable to trigger cytokine secretion. These lysozyme species lack the so-called cross-β structure, a characteristic structural motif common to all amyloid fibrils irrespective of their origin. Since fibrils of other bacterial and endogenous proteins have been shown to trigger immunological responses, our observations suggest that the cross-β structural signature might be recognized as a generic danger signal by the immune system.  相似文献   

17.
The authors have set up a thyroxine-binding-globulin radio-immunoassay in blood serum. The standard used has been determined by gravimetry, its maximal thyroxine-binding capacity is 0,96 mole of thyroxine per mole of TBG. Serum concentration of TBG has been measured in 159 euthyroid normals. The mean value of the concentration is 20 mg/l.  相似文献   

18.
Alzheimer’s disease (AD) is a neurodegenerative disorder occurring in the elderly. It is widely accepted that the amyloid beta peptide (Aβ) aggregation and especially the oligomeric states rather than fibrils are involved in AD onset. We used infrared spectroscopy to provide structural information on the entire aggregation pathway of Aβ(1–40), starting from monomeric Aβ to the end of the process, fibrils. Our structural study suggests that conversion of oligomers into fibrils results from a transition from antiparallel to parallel β-sheet. These structural changes are described in terms of H-bonding rupture/formation, β-strands reorientation and β-sheet elongation. As antiparallel β-sheet structure is also observed for other amyloidogenic proteins forming oligomers, reorganization of the β-sheet implicating a reorientation of β-strands could be a generic mechanism determining the kinetics of protein misfolding. Elucidation of the process driving aggregation, including structural transitions, could be essential in a search for therapies inhibiting aggregation or disrupting aggregates.  相似文献   

19.
Endocytosis is a fundamental eukaryotic process required for remodelling plasma-membrane lipids and protein to ensure appropriate membrane composition. Increasing evidence from a number of cell types reveals that actin plays an active, and often essential, role at key endocytic stages. Much of our current mechanistic understanding of the endocytic process has come from studies in budding yeast and has been facilitated by yeast’s genetic amenability and by technological advances in live cell imaging. While endocytosis in metazoans is likely to be subject to a greater array of regulatory signals, recent reports indicate that spatiotemporal aspects of vesicle formation requiring actin are likely to be conserved across eukaryotic evolution. In this review we focus on the ‘modular’ model of endocytosis in yeast before highlighting comparisons with other cell types. Our discussion is limited to endocytosis involving clathrin as other types of endocytosis have not been demonstrated in yeast.  相似文献   

20.
Myelin basic protein: a multifunctional protein   总被引:1,自引:1,他引:0  
Myelin basic protein (MBP), the second most abundant protein in central nervous system myelin, is responsible for adhesion of the cytosolic surfaces of multilayered compact myelin. A member of the ‘intrinsically disordered’ or conformationally adaptable protein family, it also appears to have several other functions. It can interact with a number of polyanionic proteins including actin, tubulin, Ca2+-calmodulin, and clathrin, and negatively charged lipids, and acquires structure on binding to them. It may act as a membrane actin-binding protein, which might allow it to participate in transmission of extracellular signals to the cytoskeleton in oligodendrocytes and tight junctions in myelin. Some size isoforms of MBP are transported into the nucleus and thus they may also bind polynucleotides. Extracellular signals received by myelin or cultured oligodendrocytes cause changes in phosphorylation of MBP, suggesting that MBP is also involved in signaling. Further study of this very abundant protein will reveal how it is utilized by the oligodendrocyte and myelin for different purposes. Received 2 March 2006; received after revision 12 April 2006; accepted 16 May 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号