首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia.   总被引:17,自引:0,他引:17  
C E Clancy  Y Rudy 《Nature》1999,400(6744):566-569
Advances in genetics and molecular biology have provided an extensive body of information on the structure and function of the elementary building blocks of living systems. Genetic defects in membrane ion channels can disrupt the delicate balance of dynamic interactions between the ion channels and the cellular environment, leading to altered cell function. As ion-channel defects are typically studied in isolated expression systems, away from the cellular environment where they function physiologically, a connection between molecular findings and the physiology and pathophysiology of the cell is rarely established. Here we describe a single-channel-based Markovian modelling approach that bridges this gap. We achieve this by determining the cellular arrhythmogenic consequences of a mutation in the cardiac sodium channel that can lead to a clinical arrhythmogenic disorder (the long-QT syndrome) and sudden cardiac death.  相似文献   

2.
Energetics of ion conduction through the K+ channel.   总被引:9,自引:0,他引:9  
S Bernèche  B Roux 《Nature》2001,414(6859):73-77
K+ channels are transmembrane proteins that are essential for the transmission of nerve impulses. The ability of these proteins to conduct K+ ions at levels near the limit of diffusion is traditionally described in terms of concerted mechanisms in which ion-channel attraction and ion-ion repulsion have compensating effects, as several ions are moving simultaneously in single file through the narrow pore. The efficiency of such a mechanism, however, relies on a delicate energy balance-the strong ion-channel attraction must be perfectly counterbalanced by the electrostatic ion-ion repulsion. To elucidate the mechanism of ion conduction at the atomic level, we performed molecular dynamics free energy simulations on the basis of the X-ray structure of the KcsA K+ channel. Here we find that ion conduction involves transitions between two main states, with two and three K+ ions occupying the selectivity filter, respectively; this process is reminiscent of the 'knock-on' mechanism proposed by Hodgkin and Keynes in 1955. The largest free energy barrier is on the order of 2-3 kcal mol-1, implying that the process of ion conduction is limited by diffusion. Ion-ion repulsion, although essential for rapid conduction, is shown to act only at very short distances. The calculations show also that the rapidly conducting pore is selective.  相似文献   

3.
Mayer ML 《Nature》2006,440(7083):456-462
At synapses throughout the brain and spinal cord, the amino-acid glutamate is the major excitatory neurotransmitter. During evolution, a family of glutamate-receptor ion channels seems to have been assembled from a kit consisting of discrete ligand-binding, ion-channel, modulatory and cytoplasmic domains. Crystallographic studies that exploit this unique architecture have greatly aided structural analysis of the ligand-binding core, but the results also pose a formidable challenge, namely that of resolving the allosteric mechanisms by which individual domains communicate and function in an intact receptor.  相似文献   

4.
细胞膜上的离子通道   总被引:2,自引:0,他引:2  
离子通道是细胞膜上控制离子进出的功能蛋白,在细胞生命活动中发挥重要作用.离子通道具有对离子的选择性、通透的饱和性和开关的可控制性等特点;膜电压的变化、机械刺激和某些信号分子都可以调控离子通道开关;离子通道担负着离子吸收、渗透压调控、电冲动的形成和信号转导等重要的生理功能.离子通道的结构或功能失常会导致一些严重的疾病,对离子通道进行研究,寻找和设计调控离子通道的有效药物是治疗相关疾病的重要手段。  相似文献   

5.
D A Ewald  A Williams  I B Levitan 《Nature》1985,315(6019):503-506
There is considerable evidence that cyclic AMP can modulate the electrical activity of excitable cells and that protein phosphorylation by the catalytic subunit (CS) of cAMP-dependent protein kinase is a necessary step in these modulatory effects. In analogy to alterations in enzyme activities following phosphorylation, it seems possible that direct phosphorylation of ion-channel proteins may alter their gating properties, giving rise to the observe changes in electrical activity. However, the results obtained so far do not indicate whether it is ion channels themselves that are phosphorylated, or whether phosphorylation is simply an early step in some cascade of events which leads ultimately to modulation of channel activity. The development of single-channel recording techniques has provided a way to investigate this question. Here we describe effects of CS on the activity of individual CA2+-dependent K+ channels from the nervous system of the land snail Helix measured in isolated membrane patches and in artificial phospholipid bilayers. The results demonstrate that cAMP-dependent protein phosphorylation produces long-lasting changes in the activity of individual channels, and indicate that the relevant phosphorylation site is closely associated with the channel.  相似文献   

6.
Brelidze TI  Carlson AE  Sankaran B  Zagotta WN 《Nature》2012,481(7382):530-533
The KCNH family of ion channels, comprising ether-à-go-go (EAG), EAG-related gene (ERG), and EAG-like (ELK) K(+)-channel subfamilies, is crucial for repolarization of the cardiac action potential, regulation of neuronal excitability and proliferation of tumour cells. The carboxy-terminal region of KCNH channels contains a cyclic-nucleotide-binding homology domain (CNBHD) and C-linker that couples the CNBHD to the pore. The C-linker/CNBHD is essential for proper function and trafficking of ion channels in the KCNH family. However, despite the importance of the C-linker/CNBHD for the function of KCNH channels, the structural basis of ion-channel regulation by the C-linker/CNBHD is unknown. Here we report the crystal structure of the C-linker/CNBHD of zebrafish ELK channels at 2.2-? resolution. Although the overall structure of the C-linker/CNBHD of ELK channels is similar to the cyclic-nucleotide-binding domain (CNBD) structure of the related hyperpolarization-activated cyclic-nucleotide-modulated (HCN) channels, there are marked differences. Unlike the CNBD of HCN, the CNBHD of ELK displays a negatively charged electrostatic profile that explains the lack of binding and regulation of KCNH channels by cyclic nucleotides. Instead of cyclic nucleotide, the binding pocket is occupied by a short β-strand. Mutations of the β-strand shift the voltage dependence of activation to more depolarized voltages, implicating the β-strand as an intrinsic ligand for the CNBHD of ELK channels. In both ELK and HCN channels the C-linker is the site of virtually all of the intersubunit interactions in the C-terminal region. However, in the zebrafish ELK structure there is a reorientation in the C-linker so that the subunits form dimers instead of tetramers, as observed in HCN channels. These results provide a structural framework for understanding the regulation of ion channels in the KCNH family by the C-linker/CNBHD and may guide the design of specific drugs.  相似文献   

7.
D C Ogden  S A Siegelbaum  D Colquhoun 《Nature》1981,289(5798):596-598
It is now thought that amine local anaesthetic compounds (procaine, lignocaine and related molecules) depress electrical activity in nerve and muscle cells by binding to sites within ion channels and blocking current flow. Such mechanisms have been proposed to account for the effects of these local anaesthetics on both the voltage-dependent sodium current and the postsynaptic actylcholine (ACh)-activated ionic current. Recently, strong evidence for block of ion channels by cationic drug molecules has been obtained by recording current from single ACh-activated channels in the presence of permanently charged quaternary derivatives of lignocaine. Most amine local anaesthetic compounds are, however, weak bases, present in both charged and uncharged forms at physiological pH, and some question remains as to whether a charged group is essential for blockade of ion channels. To resolve this question, we studied the action of the uncharged local anaesthetic benzocaine (ethyl-4-aminobenzoate) on postsynaptic ACh-activated endplate current and extrajunctional single channel current of frog muscle. We report here evidence that strongly suggests that benzocaine blocks ACh-activated ion channels.  相似文献   

8.
Cloned neuronal IK(A) channels reopen during recovery from inactivation   总被引:10,自引:0,他引:10  
J P Ruppersberg  R Frank  O Pongs  M Stocker 《Nature》1991,353(6345):657-660
The kinetic behaviour and functional role of potassium ion (K+) channels mediating a fast-inactivating K+ current (IK(A)) has been widely discussed. Activating in the subthreshold range of excitation, IK(A) channels are assumed to reduce the excitatory effect of depolarizing membrane currents in a time-dependent manner. Here we report that IK(A) channels not only open in response to a depolarization but open again after repolarization of the membrane. Although the current in response to the depolarization is rapidly inactivating, the current elicited by repolarization declines slowly and produces long-lasting afterhyperpolarizations under current-clamp conditions. This implies an additional physiological role for IK(A) channels, particularly those that activate positive to the threshold of excitation. The underlying biophysical mechanism was studied by fast-application of peptides corresponding to the N-terminal end of the IK(A) channel proteins. It was found to be a voltage-dependent release of the inactivation gate.  相似文献   

9.
J Tytgat  P Hess 《Nature》1992,359(6394):420-423
Cloning and expression of voltage-activated potassium ion-channel complementary DNAs has confirmed that these channels are composed of four identical subunits, each containing a voltage sensor. It has been generally accepted that the voltage sensors must reach a permissive state through one or more conformational ('gating') transitions before the channel can open. To test whether each subunit gates independently, we have constructed cDNAs encoding four subunits on a single polypeptide chain, enabling us to specify the subunit stoichiometry. The gating of heterotetramers made up from combinations of subunits with different gating phenotypes strongly suggests that individual subunits gate cooperatively, rather than independently. Nonindependent subunit gating is consistent with measurements of the kinetics of K(+)-channel gating currents and in line with the widespread subunit cooperativity observed in other multisubunit proteins.  相似文献   

10.
Mechanism of ion permeation through calcium channels   总被引:27,自引:0,他引:27  
P Hess  R W Tsien 《Nature》1984,309(5967):453-456
Calcium channels carry out vital functions in a wide variety of excitable cells but they also face special challenges. In the medium outside the channel, Ca2+ ions are vastly outnumbered by other ions. Thus, the calcium channel must be extremely selective if it is to allow Ca2+ influx rather than a general cation influx. In fact, calcium channels show a much greater selectivity for Ca2+ than sodium channels do for Na+ despite the high flux that open Ca channels can support. Relatively little is known about the mechanism of ion permeation through Ca channels. Earlier models assumed ion independence or single-ion occupancy. Here we present evidence for a novel hypothesis of ion movement through Ca channels, based on measurements of Ca channel activity at the level of single cells or single channels. Our results indicate that under physiological conditions, the channel is occupied almost continually by one or more Ca2+ ions which, by electrostatic repulsion, guard the channel against permeation by other ions. On the other hand, repulsion between Ca2+ ions allows high throughput rates and tends to prevent saturation with calcium.  相似文献   

11.
Mammalian homologues of Drosophila melanogaster transient receptor potential (TRP) are a large family of multimeric cation channels that act, or putatively act, as sensors of one or more chemical factor. Major research objectives are the identification of endogenous activators and the determination of cellular and tissue functions of these channels. Here we show the activation of TRPC5 (canonical TRP 5) homomultimeric and TRPC5-TRPC1 heteromultimeric channels by extracellular reduced thioredoxin, which acts by breaking a disulphide bridge in the predicted extracellular loop adjacent to the ion-selectivity filter of TRPC5. Thioredoxin is an endogenous redox protein with established intracellular functions, but it is also secreted and its extracellular targets are largely unknown. Particularly high extracellular concentrations of thioredoxin are apparent in rheumatoid arthritis, an inflammatory joint disease that disables millions of people worldwide. We show that TRPC5 and TRPC1 are expressed in secretory fibroblast-like synoviocytes from patients with rheumatoid arthritis, that endogenous TRPC5-TRPC1 channels of the cells are activated by reduced thioredoxin, and that blockade of the channels enhances secretory activity and prevents the suppression of secretion by thioredoxin. The data indicate the presence of a previously unrecognized ion-channel activation mechanism that couples extracellular thioredoxin to cell function.  相似文献   

12.
13.
Kim SE  Coste B  Chadha A  Cook B  Patapoutian A 《Nature》2012,483(7388):209-212
Transduction of mechanical stimuli by receptor cells is essential for senses such as hearing, touch and pain. Ion channels have a role in neuronal mechanotransduction in invertebrates; however, functional conservation of these ion channels in mammalian mechanotransduction is not observed. For example, no mechanoreceptor potential C (NOMPC), a member of transient receptor potential (TRP) ion channel family, acts as a mechanotransducer in Drosophila melanogaster and Caenorhabditis elegans; however, it has no orthologues in mammals. Degenerin/epithelial sodium channel (DEG/ENaC) family members are mechanotransducers in C. elegans and potentially in D. melanogaster; however, a direct role of its mammalian homologues in sensing mechanical force has not been shown. Recently, Piezo1 (also known as Fam38a) and Piezo2 (also known as Fam38b) were identified as components of mechanically activated channels in mammals. The Piezo family are evolutionarily conserved transmembrane proteins. It is unknown whether they function in mechanical sensing in vivo and, if they do, which mechanosensory modalities they mediate. Here we study the physiological role of the single Piezo member in D. melanogaster (Dmpiezo; also known as CG8486). Dmpiezo expression in human cells induces mechanically activated currents, similar to its mammalian counterparts. Behavioural responses to noxious mechanical stimuli were severely reduced in Dmpiezo knockout larvae, whereas responses to another noxious stimulus or touch were not affected. Knocking down Dmpiezo in sensory neurons that mediate nociception and express the DEG/ENaC ion channel pickpocket (ppk) was sufficient to impair responses to noxious mechanical stimuli. Furthermore, expression of Dmpiezo in these same neurons rescued the phenotype of the constitutive Dmpiezo knockout larvae. Accordingly, electrophysiological recordings from ppk-positive neurons revealed a Dmpiezo-dependent, mechanically activated current. Finally, we found that Dmpiezo and ppk function in parallel pathways in ppk-positive cells, and that mechanical nociception is abolished in the absence of both channels. These data demonstrate the physiological relevance of the Piezo family in mechanotransduction in vivo, supporting a role of Piezo proteins in mechanosensory nociception.  相似文献   

14.
Cytosolic free calcium ([Ca2+]cyt) is a ubiquitous signalling component in plant cells. Numerous stimuli trigger sustained or transient elevations of [Ca2+]cyt that evoke downstream stimulus-specific responses. Generation of [Ca2+]cyt signals is effected through stimulus-induced opening of Ca2+-permeable ion channels that catalyse a flux of Ca2+ into the cytosol from extracellular or intracellular stores. Many classes of Ca2+ current have been characterized electrophysiologically in plant membranes. However, the identity of the ion channels that underlie these currents has until now remained obscure. Here we show that the TPC1 ('two-pore channel 1') gene of Arabidopsis thaliana encodes a class of Ca2+-dependent Ca2+-release channel that is known from numerous electrophysiological studies as the slow vacuolar channel. Slow vacuolar channels are ubiquitous in plant vacuoles, where they form the dominant conductance at micromolar [Ca2+]cyt. We show that a tpc1 knockout mutant lacks functional slow vacuolar channel activity and is defective in both abscisic acid-induced repression of germination and in the response of stomata to extracellular calcium. These studies unequivocally demonstrate a critical role of intracellular Ca2+-release channels in the physiological processes of plants.  相似文献   

15.
Voltage-sensing residues in the S4 region of a mammalian K+ channel   总被引:13,自引:0,他引:13  
E R Liman  P Hess  F Weaver  G Koren 《Nature》1991,353(6346):752-756
The ability of ion-channel proteins to respond to a change of the transmembrane voltage is one of the basic mechanisms underlying electrical excitability of nerve and muscle membranes. The voltage sensor has been postulated to be the fourth putative transmembrane segment (S4) of voltage-activated Na+, Ca2+ and K+ channels. Mutations of positively charged residues within S4 alter gating of Na and Shaker-type K+ channels, but quantitative correlations between the charge or a residue in S4 and the gating valence of the channel have not yet been established. Here, with improved resolution of the voltage dependence of steady-state activation, we present estimates of the equivalent gating valence with sufficient precision to allow quantitative examination of the contribution of individual charged residues to the gating valence of a mammalian non-inactivating K+ channel. We conclude that at least part of the gating charge associated with channel activation is indeed contributed by charged residues within the S4 segment.  相似文献   

16.
M R Blatt  G Thiel  D R Trentham 《Nature》1990,346(6286):766-769
RECENT investigations suggest that cytoplasmic D-myo-inositol 1,4,5-trisphosphate (InsP3) functions as a second messenger in plants, as in animals, coupling environmental and other stimuli to intracellular Ca2+ release. Cytoplasmic levels of InsP3 and the turnover of several probable precursors in plants are affected by physiological stimuli--including light, osmotic stress and the phytohormone indoleacetic acid--and InsP3 activates Ca2+ channels and Ca2+ flux across plant vacuolar and microsomal membranes. Complementary data also link changes in cytoplasmic free Ca2+ to several physiological responses, notably in guard cells which regulate gas exchange through the stomatal pores of higher plant leaves. Recent evidence indicates that guard cell K+ channels and, hence, K+ flux for stomatal movements may be controlled by cytoplasmic Ca2+. So far, however, direct evidence of a role for InsP3 in signalling in plants has remained elusive. Here we report that InsP3 released from an inactive, photolabile precursor, the P5-1-(2-nitrophenyl)ethyl ester of InsP3 (caged InsP3) reversibly inactivates K+ channels thought to mediate K+ uptake by guard cells from Vicia faba L. while simultaneously activating an apparently time-independent, inward current to depolarize the membrane potential and promote K+ efflux through a second class of K+ channels. The data are consistent with a transient rise in cytoplasmic free Ca2+ and demonstrate that intact guard cells are competent to use InsP3 in signal cascades controlling ion flux through K+ channels.  相似文献   

17.
D Pietrobon  B Prod'hom  P Hess 《Nature》1988,333(6171):373-376
The mechanism by which ions deliver their message to effector proteins involves a change in the protein conformation which is induced by the specific interaction of the ion with its binding site on the protein. In the case of an ion-channel protein, conformational changes induced by permeant ions and the consequences for channel function have received little attention. Here we report that binding of permeant cations to an intra-channel binding site of the dihydropyridine (DHP)-sensitive (L-type) Ca2+ channel leads to a conformational change which destabilizes the protonated state of a group on the external channel surface, and can shift its apparent pK value by more than 2 pH units. The lifetime of the protonated state correlates with the occupancy of an intra-channel binding site by the permeant cation. The demonstration of such conformational changes in a channel protein induced by the permeant ion has important implications for realistic models of the mechanism of ion permeation.  相似文献   

18.
指出了活性氧(ROS)是普遍存在于有氧代谢中的产物,其化学性质极为活跃,有关ROS对人体的危害已逐渐得到公认.然而,越来越多的研究提示,一直被认为是人类疾病元凶的ROS对机体和细胞也有有益的一面.综述了ROS的研究进展,揭示了ROS通过调节离子通道、受体、酶以及转录因子的活性和改变细胞氧化还原状态,进而参与细胞的正常生理过程(细胞的增殖、分化和凋亡),从而讨论了ROS的双向生物学效应和机制.  相似文献   

19.
Ion channels and receptors are the structural basis for neural signaling and transmission. Recently, the function of ion channels and receptors has been demonstrated to be modulated by many intracellular and extracellular chemicals and signaling molecules. Increasing evidence indicates that the complexity and plasticity of the function of central nervous system is determined by the modulation of ion channels and receptors. Among various mechanisms, Ca 2+ signaling pathways play important roles in neuronal activity and some pathological changes. Ca 2+ influx through ion channels and receptors can modulate its further influx in a feedback way or modulate other ion channels and receptors. The common feature of the modulation is that Ca 2+ /calmodulin (CaM) is the universal mediator. CaM maintains the coordination among ion channels/receptors and intracellular Ca 2+ homeostasis by feedback modulation of ion channels/receptors activity. This review focuses on the modulating processes of ion channels and receptors mediated by CaM, and further elucidates the mechanisms of Ca 2+ signaling.  相似文献   

20.
:Ion channels and receptors are the structural basis for neural signaling and transmission. Recently, the function of ion channels and receptors has been demonstrated to be modulated by many intracellular and extracellular chemicals and signaling molecules. Increasing evidence indicates that the complexity and plasticity of the function of central nervous system is determined by the modulation of ion channels and receptors. Among various mechanisms, Ca 2+ signaling pathways play important roles in neuronal activity and some pathological changes. Ca 2+ influx through ion channels and receptors can modulate its further influx in a feedback way or modulate other ion channels and receptors. The common feature of the modulation is that Ca 2+ /calmodulin (CaM) is the universal mediator. CaM maintains the coordination among ion channels/receptors and intracellular Ca 2+ homeostasis by feedback modulation of ion channels/receptors activity. This review focuses on the modulating processes of ion channels and receptors mediated by CaM, and further elucidates the mechanisms of Ca 2+ signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号