首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
del Camino D  Holmgren M  Liu Y  Yellen G 《Nature》2000,403(6767):321-325
The structure of the bacterial potassium channel KcsA has provided a framework for understanding the related voltage-gated potassium channels (Kv channels) that are used for signalling in neurons. Opening and closing of these Kv channels (gating) occurs at the intracellular entrance to the pore, and this is also the site at which many open channel blockers affect Kv channels. To learn more about the sites of blocker binding and about the structure of the open Kv channel, we investigated here the ability of blockers to protect against chemical modification of cysteines introduced at sites in transmembrane segment S6, which contributes to the intracellular entrance. Within the intracellular half of S6 we found an abrupt cessation of protection for both large and small blockers that is inconsistent with the narrow 'inner pore' seen in the KcsA structure. These and other results are most readily explained by supposing that the structure of Kv channels differs from that of the non-voltage-gated bacterial channel by the introduction of a sharp bend in the inner (S6) helices. This bend would occur at a Pro-X-Pro sequence that is highly conserved in Kv channels, near the site of activation gating.  相似文献   

2.
Van Petegem F  Clark KA  Chatelain FC  Minor DL 《Nature》2004,429(6992):671-675
Voltage-gated calcium channels (Ca(V)s) govern muscle contraction, hormone and neurotransmitter release, neuronal migration, activation of calcium-dependent signalling cascades, and synaptic input integration. An essential Ca(V) intracellular protein, the beta-subunit (Ca(V)beta), binds a conserved domain (the alpha-interaction domain, AID) between transmembrane domains I and II of the pore-forming alpha(1) subunit and profoundly affects multiple channel properties such as voltage-dependent activation, inactivation rates, G-protein modulation, drug sensitivity and cell surface expression. Here, we report the high-resolution crystal structures of the Ca(V)beta2a conserved core, alone and in complex with the AID. Previous work suggested that a conserved region, the beta-interaction domain (BID), formed the AID-binding site; however, this region is largely buried in the Ca(V)beta core and is unavailable for protein-protein interactions. The structure of the AID-Ca(V)beta2a complex shows instead that Ca(V)beta2a engages the AID through an extensive, conserved hydrophobic cleft (named the alpha-binding pocket, ABP). The ABP-AID interaction positions one end of the Ca(V)beta near the intracellular end of a pore-lining segment, called IS6, that has a critical role in Ca(V) inactivation. Together, these data suggest that Ca(V)betas influence Ca(V) gating by direct modulation of IS6 movement within the channel pore.  相似文献   

3.
Payandeh J  Scheuer T  Zheng N  Catterall WA 《Nature》2011,475(7356):353-358
Voltage-gated sodium (Na(V)) channels initiate electrical signalling in excitable cells and are the molecular targets for drugs and disease mutations, but the structural basis for their voltage-dependent activation, ion selectivity and drug block is unknown. Here we report the crystal structure of a voltage-gated Na(+) channel from Arcobacter butzleri (NavAb) captured in a closed-pore conformation with four activated voltage sensors at 2.7?? resolution. The arginine gating charges make multiple hydrophilic interactions within the voltage sensor, including unanticipated hydrogen bonds to the protein backbone. Comparisons to previous open-pore potassium channel structures indicate that the voltage-sensor domains and the S4-S5 linkers dilate the central pore by pivoting together around a hinge at the base of the pore module. The NavAb selectivity filter is short, ~4.6?? wide, and water filled, with four acidic side chains surrounding the narrowest part of the ion conduction pathway. This unique structure presents a high-field-strength anionic coordination site, which confers Na(+) selectivity through partial dehydration via direct interaction with glutamate side chains. Fenestrations in the sides of the pore module are unexpectedly penetrated by fatty acyl chains that extend into the central cavity, and these portals are large enough for the entry of small, hydrophobic pore-blocking drugs. This structure provides the template for understanding electrical signalling in excitable cells and the actions of drugs used for pain, epilepsy and cardiac arrhythmia at the atomic level.  相似文献   

4.
Zhang X  Ren W  DeCaen P  Yan C  Tao X  Tang L  Wang J  Hasegawa K  Kumasaka T  He J  Wang J  Clapham DE  Yan N 《Nature》2012,486(7401):130-134
Voltage-gated sodium (Na(v)) channels are essential for the rapid depolarization of nerve and muscle, and are important drug targets. Determination of the structures of Na(v) channels will shed light on ion channel mechanisms and facilitate potential clinical applications. A family of bacterial Na(v) channels, exemplified by the Na(+)-selective channel of bacteria (NaChBac), provides a useful model system for structure-function analysis. Here we report the crystal structure of Na(v)Rh, a NaChBac orthologue from the marine alphaproteobacterium HIMB114 (Rickettsiales sp. HIMB114; denoted Rh), at 3.05?? resolution. The channel comprises an asymmetric tetramer. The carbonyl oxygen atoms of Thr?178 and Leu?179 constitute an inner site within the selectivity filter where a hydrated Ca(2+) resides in the crystal structure. The outer mouth of the Na(+) selectivity filter, defined by Ser?181 and Glu?183, is closed, as is the activation gate at the intracellular side of the pore. The voltage sensors adopt a depolarized conformation in which all the gating charges are exposed to the extracellular environment. We propose that Na(v)Rh is in an 'inactivated' conformation. Comparison of Na(v)Rh with Na(v)Ab reveals considerable conformational rearrangements that may underlie the electromechanical coupling mechanism of voltage-gated channels.  相似文献   

5.
R O Fox  F M Richards 《Nature》1982,300(5890):325-330
The crystal structure of alamethicin in nonaqueous solvent has been determined, and refined at 1.5-A resolution. The molecular conformation of the three crystallographically independent molecules is largely alpha-helical with a bend in the helix axis at an internal proline residue. The helix structure is highly amphipathic as most of the solvent-accessible polar atoms lie on a narrow strip of surface parallel to the helix axis. Molecular models for the voltage-gated ion channel, with n-fold symmetry and based on the molecular conformations observed in the crystal, are characterized by strong surface complementarity, a hydrophilic interior and a hydrophobic exterior. The channel structures are stabilized by a hydrated annulus of hydrogen-bonded glutamine residues which produce the greatest restriction in the channel diameter.  相似文献   

6.
Yue L  Peng JB  Hediger MA  Clapham DE 《Nature》2001,410(6829):705-709
The calcium-release-activated Ca2+channel, ICRAC, is a highly Ca2+-selective ion channel that is activated on depletion of either intracellular Ca2+ levels or intracellular Ca2+ stores. The unique gating of ICRAC has made it a favourite target of investigation for new signal transduction mechanisms; however, without molecular identification of the channel protein, such studies have been inconclusive. Here we show that the protein CaT1 (ref. 4), which has six membrane-spanning domains, exhibits the unique biophysical properties of ICRAC when expressed in mammalian cells. Like ICRAC, expressed CaT1 protein is Ca2+ selective, activated by a reduction in intracellular Ca2+ concentration, and inactivated by higher intracellular concentrations of Ca2+. The channel is indistinguishable from ICRAC in the following features: sequence of selectivity to divalent cations; an anomalous mole fraction effect; whole-cell current kinetics; block by lanthanum; loss of selectivity in the absence of divalent cations; and single-channel conductance to Na+ in divalent-ion-free conditions. CaT1 is activated by both passive and active depletion of calcium stores. We propose that CaT1 comprises all or part of the ICRAC pore.  相似文献   

7.
Orai1 is an essential pore subunit of the CRAC channel   总被引:1,自引:0,他引:1  
Prakriya M  Feske S  Gwack Y  Srikanth S  Rao A  Hogan PG 《Nature》2006,443(7108):230-233
Stimulation of immune cells causes depletion of Ca2+ from endoplasmic reticulum (ER) stores, thereby triggering sustained Ca2+ entry through store-operated Ca2+ release-activated Ca2+ (CRAC) channels, an essential signal for lymphocyte activation and proliferation. Recent evidence indicates that activation of CRAC current is initiated by STIM proteins, which sense ER Ca2+ levels through an EF-hand located in the ER lumen and relocalize upon store depletion into puncta closely associated with the plasma membrane. We and others recently identified Drosophila Orai and human Orai1 (also called TMEM142A) as critical components of store-operated Ca2+ entry downstream of STIM. Combined overexpression of Orai and Stim in Drosophila cells, or Orai1 and STIM1 in mammalian cells, leads to a marked increase in CRAC current. However, these experiments did not establish whether Orai is an essential intracellular link between STIM and the CRAC channel, an accessory protein in the plasma membrane, or an actual pore subunit. Here we show that Orai1 is a plasma membrane protein, and that CRAC channel function is sensitive to mutation of two conserved acidic residues in the transmembrane segments. E106D and E190Q substitutions in transmembrane helices 1 and 3, respectively, diminish Ca2+ influx, increase current carried by monovalent cations, and render the channel permeable to Cs+. These changes in ion selectivity provide strong evidence that Orai1 is a pore subunit of the CRAC channel.  相似文献   

8.
Starace DM  Bezanilla F 《Nature》2004,427(6974):548-553
Voltage-dependent potassium channels are essential for the generation of nerve impulses. Voltage sensitivity is conferred by charged residues located mainly in the fourth transmembrane segment (S4) of each of the four identical subunits that make up the channel. These charged segments relocate when the potential difference across the membrane changes, controlling the ability of the pore to conduct ions. In the crystal structure of the Aeropyrum pernix potassium channel KvAP, the S4 and part of the third (S3B) transmembrane alpha-helices are connected by a hairpin turn in an arrangement termed the 'voltage-sensor paddle'. This structure was proposed to move through the lipid bilayer during channel activation, transporting positive charges across a large fraction of the membrane. Here we show that replacing the first S4 arginine by histidine in the Shaker potassium channel creates a proton pore when the cell is hyperpolarized. Formation of this pore does not support the paddle model, as protons would not have access to a lipid-buried histidine. We conclude that, at hyperpolarized potentials, water and protons from the internal and external solutions must be separated by a narrow barrier in the channel protein that focuses the electric field to a small voltage-sensitive region.  相似文献   

9.
In excitable cells, voltage-gated sodium (Na(V)) channels activate to initiate action potentials and then undergo fast and slow inactivation processes that terminate their ionic conductance. Inactivation is a hallmark of Na(V) channel function and is critical for control of membrane excitability, but the structural basis for this process has remained elusive. Here we report crystallographic snapshots of the wild-type Na(V)Ab channel from Arcobacter butzleri captured in two potentially inactivated states at 3.2?? resolution. Compared to previous structures of Na(V)Ab channels with cysteine mutations in the pore-lining S6 helices (ref. 4), the S6 helices and the intracellular activation gate have undergone significant rearrangements: one pair of S6 helices has collapsed towards the central pore axis and the other S6 pair has moved outward to produce a striking dimer-of-dimers configuration. An increase in global structural asymmetry is observed throughout our wild-type Na(V)Ab models, reshaping the ion selectivity filter at the extracellular end of the pore, the central cavity and its residues that are analogous to the mammalian drug receptor site, and the lateral pore fenestrations. The voltage-sensing domains have also shifted around the perimeter of the pore module in wild-type Na(V)Ab, compared to the mutant channel, and local structural changes identify a conserved interaction network that connects distant molecular determinants involved in Na(V) channel gating and inactivation. These potential inactivated-state structures provide new insights into Na(V) channel gating and novel avenues to drug development and therapy for a range of debilitating Na(V) channelopathies.  相似文献   

10.
针对多输入多输出(MIMO)系统在双选信道下信道估计问题,以及挖掘信道在时延域和角度域的联合稀疏特性,提出了一种新的基于压缩感知的联合稀疏信道估计方案.首先,基于基扩展模型,将信道估计建模为结构化压缩感知问题,随后基于压缩感知模型,提出了两种新的贪婪算法,有效地恢复了时变信道参数.其中两步同时正交匹配追踪(TS-SOMP)算法先在时延域中找到所有非零抽头位置,然后估计非零角度域系数.两环同时正交匹配追踪(TLSOMP)算法包括内外两个循环,在外部循环中找到一个非零抽头位置后,即可直接在内部循环求解非零角度域系数.最后,给出了归一化均方误差(NMSE)的仿真曲线,验证了本算法的有效性.  相似文献   

11.
12.
5-hydroxytryptamine type 3 (5-HT3) receptors are members of the Cys-loop receptor superfamily. Neurotransmitter binding in these proteins triggers the opening (gating) of an ion channel by means of an as-yet-uncharacterized conformational change. Here we show that a specific proline (Pro 8*), located at the apex of the loop between the second and third transmembrane helices (M2-M3), can link binding to gating through a cis-trans isomerization of the protein backbone. Using unnatural amino acid mutagenesis, a series of proline analogues with varying preference for the cis conformer was incorporated at the 8* position. Proline analogues that strongly favour the trans conformer produced non-functional channels. Among the functional mutants there was a strong correlation between the intrinsic cis-trans energy gap of the proline analogue and the activation of the channel, suggesting that cis-trans isomerization of this single proline provides the switch that interconverts the open and closed states of the channel. Consistent with this proposal, nuclear magnetic resonance studies on an M2-M3 loop peptide reveal two distinct, structured forms. Our results thus confirm the structure of the M2-M3 loop and the critical role of Pro 8* in the 5-HT3 receptor. In addition, they suggest that a molecular rearrangement at Pro 8* is the structural mechanism that opens the receptor pore.  相似文献   

13.
14.
研究基于多输入多输出正交频分复用(MIMO-OFDM)系统中的信道估计算法。主要工作在训练序列最小均方(LS)准则信道估计算法的研究上,在以LS时域信道估计基本算法为前提下,提出了一种改进的LS时域信道估计算法及固定长度的时域截取算法,此算法可以大大降低计算的复杂度,结合MATLAB仿真对此改进算法的有效性和可行性进行了分析,得出了比较理想的仿真结果。  相似文献   

15.
提出一种由Golay互补序列构造双边梳状导频的低开销时隙结构和时域信道估计方案,其适用于时变频率选择性衰落信道中的MIMO SC-FDMA系统.结合左循环移位的快速周期Golay相关和右循环移位的快速周期Golay相关,提出一种在时域中高效实现MIMO信道估计的对称格形结构.对比采用快速傅里叶变换的频域信道估计方案,采用该格形结构实现时域信道估计,其计算复杂度显著降低.低复杂度能降低处理器功耗,有助于实现"绿色通信".仿真结果表明,在高速移动信道中,对于信道估计均方误差和平均误码率性能,提出的方案具有优势.  相似文献   

16.
针对在基于卷积神经网络的图像处理领域内,大部分特征融合只是通过A dd或者Concat操作进行特征叠加或特征拼接而不能很好地将有效特征进行融合的问题,对Add和Concat特征融合引入通道域的注意力机制,设计了4种可学习的特征融合方式:A-Cat、B-Cat、A-Add和B-Add.为了验证方法的有效性,选择YOLOv...  相似文献   

17.
为了研究信号在三维空间域信道模型中的空时统计特性,建立了一种三维统计信道模型,其散射椭圆半球体的中心在移动台(MS),适用于设置低MS天线、高基站(BS)天线且重要散射体分布在移动台附近的室外宏蜂窝通信环境中。假设模型的发射信号服从均匀分布,给出了到达角度(AOA)和到达时延(TOA)概率密度的分析算法,能够估计多径衰落信道的重要空时特性,在方位角和仰角平面同时描述波达信号分别在BS和MS处的分布特性。理论分析和数值仿真结果与三维散射模型结果对比表明,本模型的信道参数估计符合理论与经验结果,更加适应各种室外移动通信环境,拓展了三维统计信道模型的分析和研究。  相似文献   

18.
A variety of ligand-gated ion channels undergo a fast activation process after the rapid application of agonist and also a slower transition towards desensitized or inactivated closed channel states when exposure to agonist is prolonged. Desensitization involves at least two distinct closed states in the acetylcholine receptor, each with an affinity for agonists higher than those of the resting or active conformations. Here we investigate how structural elements could be involved in the desensitization of the acetylcholine-gated ion channel from the chick brain alpha-bungarotoxin sensitive homo-oligomeric alpha 7 receptor, using site-directed mutagenesis and expression in Xenopus oocytes. Mutations of the highly conserved leucine 247 residue from the uncharged MII segment of alpha 7 suppress inhibition by the open-channel blocker QX-222, indicating that this residue, like others from MII, faces the lumen of the channel. But, unexpectedly, the same mutations decrease the rate of desensitization of the response, increase the apparent affinity for acetylcholine and abolish current rectification. Moreover, unlike wild-type alpha 7, which has channels with a single conductance level, the leucine-to-threonine mutant has an additional conducting state active at low acetylcholine concentrations. It is possible that mutation of Leu 247 renders conductive one of the high-affinity desensitized states of the receptor.  相似文献   

19.
A mouse alpha-globin-related pseudogene lacking intervening sequences   总被引:35,自引:0,他引:35  
E F Vanin  G I Goldberg  P W Tucker  O Smithies 《Nature》1980,286(5770):222-226
A mouse alpha-globin-related pseudogene (psi alpha 30.5) completely lacks intervening sequences, and could not code for a functional globin poypeptide because of frameshifts. The widespread occurrence of globin pseudogenes in other species suggests that they are not 'dead' genes but may be important in controlling globin expression.  相似文献   

20.
针对嵌入式设备在执行ZUC加密运算过程中的侧信道信息泄露问题,提出了一种基于傅里叶变换的侧信道频域攻击。以嵌入式平台上的ZUC加密运算设计实现为分析目标,进行侧信道时域攻击和频域攻击的对比实验。实验结果表明,侧信道频域攻击远比时域攻击更高效,且适用于其他加密算法及多种设计平台。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号