首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用高导电性碳材料和商业活性炭分别作为硫的载体,与单质硫混合后进行热处理制得SP/S和CAC/S硫碳复合材料,利用热重测试、循环伏安、交流阻抗和恒流充放电测试等分析方法,研究了正极中电极材料厚度、硫碳复合比例对电池电化学性能的影响.结果表明:适当增加电极材料厚度可以有效地改善Super-P材料电极综合电化学性能;通过改变硫碳复合比例,提高硫含量则对活性炭材料锂硫电池电极的性能提升有着显著的效果.其中,含硫量为63.60%的CAC/S正极材料首次放电比容量达到908.8 m Ah/g,活性物质利用率为54.2%,100圈循环后放电容量为594.1 m Ah/g,容量保持率达到65.4%.  相似文献   

2.
为了提高TiO_2负极材料的导电能力和储钠性能,在低共熔溶剂中采用溶胶凝胶-水热法制备TiO_2/纤维素复合前驱体,再经热处理获得TiO_2/C负极材料,分析了水热温度对材料结构、形貌和电化学性能的影响。80℃条件下制备的电极材料TiO_2晶型完整,在1 C电流条件下循环200圈后放电比容量为189.5 (mA·h)/g,容量保持率达到80%;在电流为5 C的大倍率条件下充放电2 000圈后容量仍保持在152.9 (mA·h)/g,循环稳定性优异。  相似文献   

3.
具有高比表面积和低成本的活性炭是理想的超级电容器电极材料,但其作为电极材料时与金属氧化物电极相比电荷储存能力有所不足,因此通过对活性炭进行改性以提高其比电容成为研究焦点.以柚皮为碳源、硝酸铁为铁源制备柚皮活性炭/纳米Fe_2O_3复合材料,并通过系统表征研究其形态、结构和电化学性能.结果表明:引入纳米Fe_2O_3提高了活性炭的电化学性能,在电流密度为1A/g时,活性炭的比电容为159.6F/g,而复合材料的比电容增至276.0F/g;此外在对称超级电容器中,360W/kg功率密度下的复合材料获得了9.39Wh/kg的能量密度.  相似文献   

4.
为研制低成本、高比容超级电容器的关键复合电极材料,采用涂覆热分解法,以RuCl3·2H2O为前躯体,制备二氧化钌/活性炭复合电极材料.借助扫描电镜、附着力测试、循环伏安、恒流充放电和电化学阻抗谱等检测手段,观察复合薄膜电极材料的表面形貌,分析不同涂覆量的二氧化钌/活性炭复合薄膜电极的性能.研究结果表明:二氧化钌/活性炭复合电极材料具有良好的电化学稳定性,涂覆热分解最佳涂覆数为4次,复合薄膜的比表面积为321.4 m2/g,附着力为11.4 MPa;在H2s04溶液浓度为0.5 mol/L、扫描速率20 mV/s条件下,复合电极材料的比电容为422 F/g,内阻为0.33 Ω;经300次充放电后,电容量持续为98.8%.  相似文献   

5.
有机体系下,采用循环伏安法(CV)在活性炭电极表面电聚合聚苯胺制备聚苯胺/活性炭复合电极,通过循环伏安、恒流充放电和电化学交流阻抗谱(EIS)测试了电极的电化学特性,结果表明,聚苯胺/活性炭复合电极具有良好的电容行为,在-1.0~1.5V参比极为Ag/AgCl,测试区间内具有较大的电化学容量,电极比电容高达276F·g-1,较活性炭电极的比电容92F·g-1有了很大提高.并且交流阻抗法测得活性炭电极的电荷转移电阻Rct为4.9Ω,而复合电极Rct仅2.4Ω.1000次充放电测试后,复合电极比电容仅衰减15.7%.由此表明,在有机体系下聚苯胺/活性炭复合电极是一种具有良好循环寿命和高比电容的复合电极材料.  相似文献   

6.
以无定形TiO_2粉体为前驱体,利用水热反应制得TiO_2纳米片,后与氧化石墨复合并还原得到TiO_2纳米片/石墨烯(rGO)复合电极材料。利用X射线衍射(XRD)、氮气吸脱附、扫描电镜(SEM)和透射电镜(TEM)对其形貌和结构进行表征。结果表明,TiO_2纳米片是由粒子聚集而成,在复合材料中,TiO_2纳米片进入到了石墨烯片层之间,增加了复合材料的比表面积。循环伏安(CV)、恒电流放电(CP)和循环寿命测试表明,TiO_2/rGO纳米复合电极材料在三电极体系中,电流密度为1A·g~(-1)时,比电容高达240.9 F·g~(-1)。2 000次循环后仍保持初始电容68%,表现出优秀的超级电容器电极材料性能。  相似文献   

7.
掺锂聚苯胺/活性炭超级电容器电极材料的制备及电性能   总被引:1,自引:0,他引:1  
采用苯胺在改性活性炭表面原位聚合的方法,合成了掺锂的超级电容器用聚苯胺/活性炭复合电极材料.用扫描电镜(SEM)研究了掺杂前后该复合材料的形态.在6mol/LKOH溶液中,以Hg/HgO电极为参比电极对电极材料进行循环伏安、恒流充放电、交流阻抗等电化学性能的测试,考察了掺杂锂盐后作为超级电容器的电极材料的电极性能.结果表明,掺杂锂盐后的复合电极材料的比容量有很明显的提高,由未掺杂锂时的372F/g提高到466F/g。多次循环充放电后电容量的保留率也得到显著的提高。  相似文献   

8.
(NiO+CoO)/活性炭超级电容器电极材料的制备及其性能   总被引:2,自引:0,他引:2  
以表面包覆7%Co(OH)2的球形Ni(OH)2为原料,在450℃热分解得到(NiO CoO)粉末,将其与活性炭(AC)按不同质量比混合均匀,得到超级电容器用(NiO CoO)/AC 复合电极材料.采用扫描电镜(SEM)、X 射线衍射(XRD)、热重分析(TG)等方法对样品进行物理性能测试,用循环伏安(CV)法研究不同配比的(NiO CoO)/AC复合电极在6mol/L KOH 电解液中的电化学性能,并对复合电极材料模拟电容器与活性炭模拟电容器进行恒流充放电测试.研究结果表明在6 mol/L KOH电解液中,当复合材料中的(NiO CoO)质量分数为6%时,所制备的单电极比电容量最大,为240 F/g,比纯活性炭电极的比电容(约160 F/g)提高50%;复合电极模拟电容器具有较好的可逆性和电化学性能.  相似文献   

9.
将经过二次活化处理的活性炭材料制作的电极片组装成碳基电化学电容器. 通过恒电流充放电实验,表明其具有良好的电化学充放电性能--活性物质的比容量为173.2 F/g. 恒功率充放电实验证明该电容器在大功率充放电条件下活性物质的能量密度大于5.0 Wh/kg.电化学电容器与镍氢电池组成的复合电源系统具有优良的脉冲充放电特性,脉冲性能与镍氢电池相比有明显的提高,可以应用于GSM, CDMA移动通讯系统.初步探讨了高电压型电容器的制备工艺,并组装了具有10 V工作电压的实用型电容器.  相似文献   

10.
利用充放电测试、循环伏安和交流阻抗等方法研究LiMn2O4/活性炭复合材料在1 mol/L LiPF6-EC/EMC/DMC有机电解液中的电化学性能.研究结果表明:复合材料同时具备超级电容器高功率密度和锂离子电池高能量密度的特点;复合材料的容量包含活性炭的双电层电容和LiMn2O4电化学反应的容量;当活性炭的质量分数为20%时,10C倍率下复合材料的首次放电容量高达76.4 mA.h/g,100次循环后容量几乎没有衰减(0.01%),与纯LiMn2O4电极相比有很大提高.  相似文献   

11.
以FTO玻璃为衬底,采用水热法制备针状TiO_2电极材料.利用XRD、SEM、EDS对TiO_2电极材料结构和成分进行分析,并用电化学工作站对其电容性能进行测量.结果表明:经H_2SO_4溶液和电化学循环处理后,TiO_2电极材料从白色转变成蓝色物质,导电性大幅上升,比电容也随之显著提高,从0. 657 F/g上升到49. 14 F/g,CV曲线表明TiO_2电极材料经电循环后出现从赝电容到双电层电容的转变.  相似文献   

12.
用固相合成法制备Ag2O作为超级电容器材料,通过循环伏安与恒流充放电等测试手段对Ag2O电极及与作为负极的活性炭电极组成的电容进行分析.结果表明,在7mol·L-1KOH电解液中,Ag2O电极在0.15~0.35V(相对于Hg/HgO)的电压范围内表现出了法拉第电容特性.在不同电流密度下,电极比容量达427.3~554.9F·g-1,Ag2O/活性炭单体电容器比电容为42.5~61.65F·g-1.同时还对正极中Ag2O的含量及导电剂对Ag2O/活性炭单体电容器性能的影响进行了研究.  相似文献   

13.
为提升锂离子电池能量密度、循环寿命、快充能力和安全性等方面性能,本文研究纳米级硅碳复合负极材料合成技术,以提高硅碳材料在电池充放电过程中的首次库伦效率、改善材料的循环稳定性、增强材料导电性,并解决硅碳材料易出现的体积膨胀技术难题.通过优化配方,得到与之匹配的高比容量镍钴铝正极材料和高电导电解液,获得具备长寿命(>2 000次循环)的超高能量密度锂离子电池(能量密度>350 Wh/kg),将硅碳负极材料的比容量提高至600 mAh/g以上;采用纳米技术和单分子层超薄修饰技术研发的纳米镍钴铝复合正极材料的比容量达到200 mAh/g以上;研究出匹配硅碳复合负极材料的宽温电解液配方,以保持离子的电导率和高稳定性,有效提高电池的电化学性能.对锂离子电池的结构设计、工艺控制以及极片制备技术进行进一步优化,以提升其能量密度、循环寿命和安全性,使其能够规模化地应用于动力及储能市场.  相似文献   

14.
蓄冷空调性能及制冷系数与相变材料密切相关.将石蜡复合乳状液作为分散介质,以纳米TiO_2粒子作为导热载体,采用低能乳化工艺微乳液转相法,制备出纳米TiO_2/石蜡复合乳状液相变材料,并对其分散稳定性、导热系数和蓄-放热循环稳定性进行了分析.研究结果表明:纳米TiO_2/石蜡复合乳状液相变材料的导热系数相对于纯石蜡乳状液的导热系数有明显提高,当纳米TiO_2粒子质量分数为0.15%时,纳米TiO_2/石蜡复合乳状液相变材料的导热系数比纯石蜡乳状液的导热系数提高了117.95%;TiO_2/石蜡乳状液固-液相变热循环过程中并无明显温度平台,而且其蓄-放热循环稳定性很好.该纳米TiO_2/石蜡复合乳状液相变材料有望应用于蓄冷空调,以提高蓄冷空调性能及制冷系数.  相似文献   

15.
以全棉机织布和全棉水刺非织布作为柔性基材,通过化学氧化法制备超级电容器用聚吡咯/棉织物复合电极材料.研究电极材料样品的电学性能,测试结果表明,电极材料样品具有良好的电学性能,在0.1 A/g电流密度下,聚吡咯/棉机织布和聚吡咯/棉非织布电极材料样品的比容量分别为346 F/g和282 F/g.以两种电极材料样品分别与PVAH_3PO_4凝胶电解质组装柔性固态超级电容器,进行电化学性能测试,在电流密度为1 mA cm~(-2)时,基于聚吡咯/棉机织布和聚吡咯/棉非织布电极材料组装的固态超级电容器容量为0.64 F/cm~2(152.2 F/g)和0.44 F/cm~2(115.7 F/g).  相似文献   

16.
活化剂种类对活性炭结构及性能的影响   总被引:1,自引:0,他引:1  
以石油焦为前驱体,分别以KOH,NaOH,K2CO3和Na2CO3为活化剂通过化学活化制备活性炭,采用振实密度仪和全自动N2吸附仪研究活性剂对活性炭结构的影响,并以制备的活性炭为电极材料,l mol/LEt4NBF4/PC为电解液组装模拟电容器,采用LAND快速采样电池测试仪和电化学工作站考察不同活化剂对活性炭电化学性能的影响.研究结果表明:KOH具有最强的活化能力,其活化制备的活性炭具有较高的微孔含量和发达的孔隙结构,比表面积达2 362m2/g,孔容达到1.263 cm3/g,以其作电极材料,表现出良好的电容行为,质量比容量最高达到128.0 F/g,随着活化剂碱性的降低,活化能力大幅度降低,制备的活性炭比表面积和孔容急剧减小,K2CO3和Na2CO3不适合用作活化石油焦制备活性炭的活化剂.  相似文献   

17.
以化学气相沉积法制备的三维网状石墨烯/泡沫镍(3DGE/NF)为基底,电化学沉积Ni掺杂Co(OH)2纳米片得到三维镍钴双氢氧化物/石墨烯/泡沫镍(3D NixCo1-x(OH)2/GE/NF)复合电极材料,研究Ni掺杂量对材料的形貌及电化学性能的影响.结果表明:在Co(OH)2中掺杂适量的Ni可以改善材料的表面形貌;高质量、高导电性石墨烯的存在促进电极与电解液的电荷传输,加上镍钴的协同作用,能有效提高材料的比容量和循环倍率性能.当Ni掺杂量为34%时,3D Ni0.34Co0.66(OH)2/GE/NF复合电极材料具有最佳的电化学性能,当电流密度为3 A/g时,其在1mol/L的KOH电解液中比容量达到1 714F/g,当电流密度升高到30A/g时比容量仍保持有73%达到1 254F/g,显示出较好的倍率性,且在10A/g的大电流密度下经过500次循环后,比容量保持率为83%.  相似文献   

18.
通过对普通颗粒活性炭采取不同优化工艺处理,发现经空气预氧化后,再用混合酸(磷酸+硫酸)或氢氧化钾进行活化处理,可得到高比电容超级电容器用活性炭.红外光谱和氮吸脱附分析表明:预氧化处理并没有明显增加其表面官能团,但有利于疏通孔道,提高活性炭的有效孔容积;混酸和强碱活化处理明显丰富活性炭的表面电活性基团,并且增大材料的比表面积.采用交流阻抗、循环伏安、恒流充放电等电化学方法对活化材料进行超级电容行为测试,表明经氧化-活化处理的活性炭电极传荷阻抗小、电容特征显著,循环性能稳定.在1.0 A/g电流条件下,经过空气氧化-混酸活化处理的活性炭(POAC_A)电极比容量为187 F/g,空气氧化-碱活化处理的活性炭(POAC_B)电极比容量达到206F/g.  相似文献   

19.
石墨是锂离子电池商用的负极材料,但其较低的比容量(372.0 m A·h/g)难以满足不断增长的高容量需求.因此,设计和制备高性能负极材料是提升锂离子电池能量密度及性能的关键因素之一.首先以金属有机框架ZIF-8为模板构建出ZIF-8@ZIF-67核壳复合结构,后经简单煅烧处理制备中空ZnCo_2O_4/ZnO复合纳米材料,并通过XRD, SEM, TEM以及恒流充放电等对其结构、形貌及电化学性能进行研究.结果表明:中空ZnCo_2O_4/ZnO复合纳米材料作为锂离子电池负极材料时表现出良好的电化学性能,初次放电容量达到1 536.8 m A·h/g;以100 m A/g电流密度充放电100次后,比容量稳定在780 m Ah/g,显示出优良的电化学储能特性.  相似文献   

20.
使用电导率高的硫化铜作为添加成分,与理论比容量高的硫化镍结合,通过一步氢气泡模板电沉积法在铜箔基底上制备了一种具有三维花状多孔结构的Ni-Cu-S电极材料。该结构提高了材料的比表面积,增加了材料的活性反应位点,从而加快了电荷传输,提高了电极材料的电化学性能。在三电极体系中,Ni-Cu-S电极材料的比电容可达1.57 C/cm2,倍率性能为80.2%。使用Ni-Cu-S电极材料(正极)和活性炭(AC)(负极)制备了不对称超级电容器,在双电极体系中对其进行性能测试,其比电容为0.91 C/cm2,在5.32 mW/cm2的功率密度下具有0.89 mWh/cm2的高能量密度。经过7 000次充放电循环后,电容仍保持初始值的89.7%,显示出了良好的循环稳定性。结果表明Ni-Cu-S是一种高性能超级电容器电极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号