首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一种新的CMOS带隙基准电压源设计   总被引:2,自引:0,他引:2  
设计了一种新的CMOS带隙基准电压源.通过采用差异电阻间温度系数的不同进行曲率补偿,利用运算放大器进行内部负反馈,设计出结构简单、低温漂、高电源抑制比的CMOS带隙基准电压源.仿真结果表明,在VDD=2 V时,电路具有4.5×10-6V/℃的温度特性和57 dB的直流电源抑制比,整个电路消耗电源电流仅为13μA.  相似文献   

2.
设计了一种指数型曲线补偿的带隙基准源电路.利用Bipolar管的电流增益随温度呈指数型变化的特性,有效地对基准源进行指数型温度补偿.电路具有较低的温度系数,并且结构简单;利用深度负反馈的方法,可有效地抑制电源电压变化给带隙基准源所带来的影响,提高了电源抑制比;为了加大电路的带负载能力,该电路增加了输出缓冲级.用spectre工具对其进行仿真,结果显示在-40 ℃~85 ℃的温度范围内,电路具有12×10-6/℃的低温度系数;当电源电压在4.5 V到5.5 V之间变化时,基准源电压的变化量低于85 μV.电路采用0.6 μm BICMOS工艺实现.  相似文献   

3.
基于0.6μm BICMOS(双极型互补金属氧化物半导体)工艺设计了一种具有分段曲率补偿的高精度带隙基准电压源.对该分段曲率补偿电路产生不同温度区间的正温度系数电流进行补偿,且所需的补偿支路可根据实际电路要求进行设定.基准核心电路采用无运算放大器结构,形成负反馈环路稳定输出电压.同时设计了预校准电路,提高了电源抑制比.利用cadence工具仿真结果表明,在-40~125℃范围内基准电压的温度系数仅为0.3×10-6/℃,电源抑制比达到-104dB.  相似文献   

4.
低温度系数高电源抑制比带隙基准源的设计   总被引:1,自引:0,他引:1  
基于SMIC 0.18 μm CMOS工艺,设计了一种适用于数模或模数转换等模数混合电路的低温度系数、高电源抑制比的带隙基准电压源.针对传统带隙基准源工作电压的限制,设计采用电流模结构使之可工作于低电源电压,且输出基准电压可调;采用共源共栅结构(cascode)作电流源,提高电路的电源抑制比(PSRR);采用了具有高增益高输出摆幅的常见的两级运放.Cadence仿真结果表明:在1.8V电源电压下,输出基准电压约为534 mV,温度在-25~100℃范围内变化时,温度系数为4.8 ppm/℃,低频电源抑制比为-84 dB,在1.6~2.0 V电源电压变化范围内,电压调整率为0.15 mV/V.  相似文献   

5.
为获得一个稳定而精确的基准电压,提出了一种适用于低电源电压下高阶曲率补偿的电流模式带隙基准源电路,通过在传统带隙基准源结构上增加一个电流支路,实现了高阶曲率补偿。该电路采用Chartered 0.35μm CMOS工艺,经过Spectre仿真验证,输出电压为800mV,在-40~85℃温度范围内温度系数达到3×10^-6℃^-1,电源抑制比在10kHz频率时可达-60dB,在较低电源电压为1.7V时电路可以正常启动,补偿改进后的电路性能较传统结构有很大提高.  相似文献   

6.
为降低传统双极结型晶体管(Bipolar Junction Transistor, BJT)型带隙基准源温度系数高的问题,提出了一种带有高阶曲率补偿的带隙基准电压源,极大降低了带隙基准源的温度系数.设计基于传统BJT型带隙基准电路,采用高阶曲率补偿电路对温度系数进行优化,并采用折叠式cascode运算放大器和自偏置cascode电流镜对输入电压范围进行优化.设计的带隙基准源具有低温度系数、高电源电压抑制比、结构简单的优点,是各类片上系统的优良选择.  相似文献   

7.
为提高带隙基准电压源的温度特性,采用Buck电压转移单元产生的正温度系数对VBE的负温度系数进行高阶曲率补偿.同时使用共源共栅结构(Cascode)提高电源抑制比(PSRR).电路采用0.5 μm CMOS工艺实现,在5 V电源电压下,基准输出电压为996.72 mV,温度范围在-25~125 ℃时电路的温漂系数为1.514 ppm/℃;当电源电压在2.5~5.5 V变化时,电压调整率为0.4 mV/V,PSRR达到59.35 dB.  相似文献   

8.
本文设计了一款低温度系数高电源抑制比的带隙基准电压源。设计采用动态阈值MOS管(DTMOS)产生温度补偿电流,以降低温漂;输出部分采用一个简单的低通滤波器,以降低高频噪声,在较宽频带内提高电源抑制比。电路采用SMIC 0.18μm标准CMOS工艺实现,供电电源为1.8V,仿真结果表明:电路在-40~130℃温度范围内,温度系数为1.54×10-6℃-1,输出基准电压为1.154V,电源抑制比在10Hz处为-76dB,在100kHz处为-85dB,在15 MHz处为-63dB。本基准源具有较好的综合性能,可为数模转换电路、模数转换电路、电源管理芯片等提供高精度的基准电压,具有较大的应用价值。  相似文献   

9.
提出了一种新型的高性能带隙基准电压源,该基准电压源采用共源共栅电流镜提供偏置电流,减少沟道长度调制效应带来的误差,并增加1个简单的减法电路,使得偏置电流更好地跟随电源电压变化,从而提高电路的电源抑制比。整体电路使用CSMC 0.6μm CMOS工艺,采用Hspice进行仿真。仿真结果表明,在-50~ 100℃温度范围内温度系数为2.93×10-5℃,电源抑制比达到-84.2 dB,电源电压在3.5~6.5 V之间均可实现2.5±0.0012 V的输出,是一种有效的基准电压实现方法。  相似文献   

10.
设计了低温度系数、高电源抑制比BiCMOS带隙基准电压发生器电路.综合了带隙电压的双极型带隙基准电路和与电源电压无关的电流镜的优点.电流镜用作运放,它的输出作为驱动的同时还作为带隙基准电路的偏置电路.使用0.6μm双层多晶硅n-well BiCMOS工艺模型,利用Spectre工具对其仿真,结果显示当温度和电源电压变化范围分别为-45~85℃和4.5~5.5 V时,输出基准电压变化1 mV和0.6 mV;温度系数为16×10-6/℃;低频电源抑制比达到75 dB.电路在5 V电源电压下工作电流小于25μA.该电路适用于对精度要求高、温度系数低的锂离子电池充电器电路.  相似文献   

11.
给出一款带曲率补偿的CMOS带隙基准源电路,该电路利用双极性晶体管电流增益β与温度的指数关系对带隙基准曲率进行补偿,以简单的电路结构获得低的温度系数.电路采用CSMC0.5μm 2P3M mixed signalCMOS工艺设计,Cadence Spectre仿真结果显示,在3.6V的电源电压、-40~85℃范围内,基准源的温度系数为5.0×10-6/℃.  相似文献   

12.
文章依据带隙基准电压源的基本原理设计了一种低温漂的带隙基准源,与传统带隙基准相比,所设计的电压源未使用运放。该基准电源电路有较低的温度系数和较高的电源抑制比,此外还增加了启动电路,以保证电路工作点正常。仿真结果表明,低频时电源抑制比可达85 dB,在-20℃~100℃范围内输出变化仅为0.8 mV,温度系数仅为4.968×10-6,常温下输出电压为1.296 V,电源电压范围为3.9~5.5 V。  相似文献   

13.
为提高基准源的温度系数、电压调整率和电源抑制比,采用0.6μm标准CMOS工艺,设计一种采用电流镜复制技术的带隙基准源.仿真结果表明,电路具有结构简单、启动性能好、电压输出灵活稳定、温度范围宽等特点,能够满足模拟集成电路的要求.在3种工艺角模型,-50~+195℃温度变化范围内,其温度系数约为1.632×10-5℃-1,电源抑制比为-70 dB;而在4.5~6.5 V的电源范围内,其电压调整率为4.0×10-4.  相似文献   

14.
基于Ahujia基准电压发生器设计了低功耗、高电源抑制比CMOS基准电压发生器电路.其设计特点是采用了共源共栅电流镜,运放的输出作为驱动的同时还作为自身的偏置电路;其次是采用了带隙温度补偿技术.使用CSMC标准0.6μm双层多晶硅n-well CMOS工艺混频信号模型,利用Cadence的Spectre工具对其仿真,结果显示,当温度和电源电压变化范围为-50-150℃和4.5-5.5 V时,输出基准电压变化小于1.6 mV(6.2×10-6/℃)和0.13 mV;低频电源抑制比达到75 dB.电路在5 V电源电压下工作电流小于10 μA.该电路适用于对功耗要求低、稳定度要求高的集成温度传感器电路中.  相似文献   

15.
介绍了一种基于CSMC 0.5-μm 2P3M n-阱混合信号CMOS工艺的高阶温度补偿的带隙参考源。该CMOS带隙参考源利用了Buck电压转换单元和与温度无关的电流,提供了一种对基极-发射极电压V_BE的高阶温度补偿。它还采用共源共栅结构以提高电源抑制比。在5V电源电压下,温度变化范围为-20~100℃时,该带隙参考源的温度系数为5.6ppm/℃。当电源电压变化范围为4~6V时,带隙参考源输出电压的变化为0.4mV。  相似文献   

16.
在传统电流求和模式带隙基准电压源的基础上进行改进,设计了一种简单的三阶曲率补偿带隙基准电压源。该基准源由启动电路、低压高增益两级运算放大器、基准核心电路和高阶曲率补偿电路组成。在低温段,通过PMOS管进行二阶补偿;在高温段,通过PTAT2电流进行三阶补偿。基于CSMC 0.35μm CMOS工艺,采用Cadence软件对设计电路进行仿真分析。结果表明,在-40~125℃温度范围内,5 V电源电压下,基准源输出电压为1.226V,输出电压变化范围为0.51mV,基准源的温度系数为2.5×10-6/℃,低频时的电源抑制比为-67 dB。  相似文献   

17.
采用分段曲率补偿的新型带隙基准电压源设计   总被引:1,自引:0,他引:1  
宗永玲  陈中良 《河南科学》2014,(8):1467-1469
设计了一种利用MOS晶体管产生正负温度系数电流的新型带隙基准电压源,并采用分段曲率补偿技术,从而降低基准电压的温度系数,同时增加工作温度范围.该电路使用TSMC 0.6 um标准CMOS工艺进行设计,Spectre仿真结果表明,电源电压为1.5 V,温度范围为-15~95℃时,温度系数为107 ppm/℃,采用分段曲率补偿后,温度系数降为4.28 ppm/℃.  相似文献   

18.
介绍了一种基于CSMC0.5-μm2P3Mn-阱混合信号CMOS工艺的高阶温度补偿的带隙参考源。该CMOS带隙参考源利用了Buck电压转换单元和与温度无关的电流,提供了一种对基极-发射极电压VBE的高阶温度补偿。它还采用共源共栅结构以提高电源抑制比。在5 V电源电压下,温度变化范围为-20 ~100℃时,该带隙参考源的温度系数为5.6 ppm/℃。当电源电压变化范围为4 ~6 V时,带隙参考源输出电压的变化为0.4 mV。  相似文献   

19.
随着片上系统的发展,带隙基准源精度和功耗的要求也越来越高.目前的高阶温度补偿方法在工艺兼容、设计复杂度和功耗上还存在一定的局限性.本文推导了一个新颖的电流模带隙基准电路在饱和区工作时的温度特性,并结合双带隙结构在输出支路上采用电流比例相减的方式实现有效的曲率补偿,从而实现了一个新颖的双带隙结构CMOS带隙基准源.在GSMC 0.18μm工艺下,设计的CMOS带隙基准源版图面积为0.066mm~2.蒙特卡罗后仿真的结果表明,在-40~125℃温度范围内平均温度系数为14.27ppm/℃;在27℃时基准电压平均值为1.201V,标准偏差变化仅为33.813mV(2.82%);在3.3V工作电压下,静态电流平均为9.865μA,电源抑制为-37.21dB.本文设计的带隙基准源具有高精度、低功耗、结构简单的特点,是片上系统的良好选择.  相似文献   

20.
通过将具有高阶温度项的MOS管亚阈值区漏电流转换为电压,并与一阶温度补偿电压进行加权叠加,实现二阶温度补偿.采用高增益的运放和负反馈回路提高电源抑制能力,设计一种低温漂高电源电压抑制比带隙基准电压源.基于0.18μm CMOS工艺,完成电路设计与仿真、版图设计与后仿真.结果表明,在1.8 V的电源电压下,电路输出电压为1.22 V;在温度变化为-40~110℃时,温度系数为3.3 ppm/℃;低频电源电压抑制比为-96 dB@100 Hz;静态电流仅为33μA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号