共查询到11条相似文献,搜索用时 15 毫秒
1.
In the present investigation, magnetic separation studies using an induced roll magnetic separator were conducted to beneficiate low-grade ferruginous manganese ore. The feed ore was assayed to contain 22.4% Mn and 35.9% SiO2, with a manganese-to-iron mass ratio (Mn:Fe ratio) of 1.6. This ore was characterized in detail using different techniques, including quantitative evaluation of minerals by scanning electron microscopy, which revealed that the ore is extremely siliceous in nature and that the associated gangue minerals are more or less evenly distributed in almost all of the size fractions in major proportion. Magnetic separation studies were conducted on both the as-received ore fines and the classified fines to enrich their manganese content and Mn:Fe ratio. The results indicated that the efficiency of separation for deslimed fines was better than that for the treated unclassified bulk sample. On the basis of these results, we proposed a process flow sheet for the beneficiation of low-grade manganese ore fines using a Floatex density separator as a pre-concentrator followed by two-stage magnetic separation. The overall recovery of manganese in the final product from the proposed flow sheet is 44.7% with an assay value of 45.8% and the Mn:Fe ratio of 3.1. 相似文献
2.
Comprehensive recovery of gold and base-metal sulfide minerals from a low-grade refractory ore 下载免费PDF全文
Wen-juan Li Shuang Liu Yong-sheng Song Jian-kang Wen Gui-ying Zhou Yong Chen 《矿物冶金与材料学报》2016,23(12):1377-1386
The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample of this ore: gold flotation–gold concentrate leaching–lead and zinc flotation from the gold concentrate leaching residue. Closed-circuit trials of gold flotation yielded a gold concentrate that assayed at 40.23 g·t-1 Au with a recovery of 86.25%. The gold concentrate leaching rate was 98.76%. Two variants of lead-zinc flotation from the residue—preferential flotation of lead and zinc and bulk flotation of lead and zinc—were tested using the middling processing method. Foam from the reflotation was returned to the lead rougher flotation or lead–zinc bulk flotation, whereas middlings from reflotation were discarded. Sulfur concentrate was a byproduct. The combined strategy of flotation, leaching, and flotation is recommended for the treatment of this kind of ore. 相似文献
3.
Nurul A. Yunus Mohd H. Ani Hamzah M. Salleh Rusila Z. A. Rashid Tomohiro Akiyama Hadi Purwanto Nur E. F. Othman 《矿物冶金与材料学报》2014,21(4):326-330
Beneficiation of Malaysian iron ore is becoming necessary as iron resources are depleting. However, the upgrading process is challenging because of the weak magnetic properties of Malaysian iron ore. In this study, bio-char derived from oil palm empty fruit bunch (EFB) was utilized as an energy source for reduction roasting. Mixtures of Malaysian iron ore and the bio-char were pressed into briquettes and subjected to reduction roasting processes at 873–1173 K. The extent of reduction was estimated on the basis of mass loss, and the magnetization of samples was measured using a vibrating sample magnetometer (VSM). When reduced at 873 K, the original goethite-rich ore was converted into hematite. An increase in temperature to 1073 K caused a significant conversion of hematite into magnetite and enhanced the magnetic susceptibility and saturation magnetization of samples. The magnetic properties diminished at 1173 K as the iron ore was partially reduced to wustite. This reduction roasting by using the bio-char can assist in upgrading the iron ore by improving its magnetic properties. 相似文献
4.
Reductive leaching of manganese from low-grade pyrolusite ore in sulfuric acid using pyrolysis-pretreated sawdust as a reductant 下载免费PDF全文
Manganese (Mn) leaching and recovery from low-grade pyrolusite ore were studied using sulfuric acid (H2SO4) as a leachant and pyrolysis-pretreated sawdust as a reductant. The effects of the dosage of pyrolysis-pretreated sawdust to pyrolusite ore, the concentration of sulfuric acid, the liquid/solid ratio, the leaching temperature, and the leaching time on manganese and iron leaching efficiencies were investigated. Analysis of manganese and iron leaching efficiencies revealed that a high manganese leaching efficiency was achieved with low iron extraction. The optimal leaching efficiency was determined to be 20wt% pyrolysis-pretreated sawdust and 3.0 mol/L H2SO4 using a liquid/ solid ratio of 6.0 mL/g for 90 min at 90℃. Other low-grade pyrolusite ores were tested, and the results showed that they responded well with manganese leaching efficiencies greater than 98%. 相似文献
5.
Optimization of reaction conditions for the electroleaching of manganese from low-grade pyrolusite 下载免费PDF全文
In the present study, a response surface methodology was used to optimize the electroleaching of Mn from low-grade pyrolusite. Ferrous sulfate heptahydrate was used in this reaction as a reducing agent in sulfuric acid solutions. The effect of six process variables, including the mass ratio of ferrous sulfate heptahydrate to pyrolusite, mass ratio of sulfuric acid to pyrolusite, liquid-to-solid ratio, current density, leaching temperature, and leaching time, as well as their binary interactions, were modeled. The results revealed that the order of these factors with respect to their effects on the leaching efficiency were mass ratio of ferrous sulfate heptahydrate to pyrolusite > leaching time > mass ratio of sulfuric acid to pyrolusite > liquid-to-solid ratio > leaching temperature > current density. The optimum conditions were as follows: 1.10:1 mass ratio of ferrous sulfate heptahydrate to pyrolusite, 0.9:1 mass ratio of sulfuric acid to pyrolusite, liquid-to-solid ratio of 0.7:1, current density of 947 A/m2, leaching time of 180 min, and leaching temperature of 73℃. Under these conditions, the predicted leaching efficiency for Mn was 94.1%; the obtained experimental result was 95.7%, which confirmed the validity of the model. 相似文献
6.
采用化学共沉法制备了CoFe2-xAlxO4(x=0.1~0.5)铁氧体纳米粉料,并在不同温度下进行退火处理,利用X射线衍射仪(XRD)、振动样品磁强计(VSM)对样品的结构和磁性进行了测量和分析.结果表明:所有样品均形成了单一的尖晶石相,晶粒尺寸为35~45nm;经1280℃退火后的样品能同时获得较高的比饱和磁化强度如和矫顽力Hc;随铝代换量x的增大,比饱和磁化强度起初变化平缓然后迅速降低,而矫顽力却呈现出了先增后减的趋势,在x=0.3附近出现峰值。 相似文献
7.
The preparation of ferronickel alloy from the nickel laterite ore with low Co and high MgO contents was studied by using a pre-reduction-smelting method. The effects of reduction time, calcination temperature, quantity of reductant and calcium oxide (CaO), and pellet diameter on the reduction ratio of Fe and on the pellet strength were investigated. The results show that, for a roasting temperature >800℃, a roasting time >30 min, 1.5wt% added anthracite coal, 5wt% added CaO, and a pellet size of~10 mm, the reduction ratio of Fe exceeds 70% and the compressive strength of the pellets exceeds 10 kg per pellet. Reduction smelting experiments were performed by varying the smelting time, temperature, quantity of reductant and CaO, and reduction ratio of Fe in the pellets. Optimal conditions for the reduction smelting process are as follows:smelting time, 30-45 min; smelting temperature, 1550℃; quantity of reductant, 4wt%-5wt%; and quantity of CaO, 5wt%; leading to an Fe reduction ratio of 75% in the pellets. In addition, the mineral composition of the raw ore and that during the reduction process were investigated by process mineralogy. 相似文献
8.
In order to obtain superior electrode performances in capacitive deionization(CDI), the electrophoretic deposition(EPD) was introduced as a novel strategy for the fabrication of carbon nanotube(CNT) electrode.Preparation parameters, including the concentration of slurry components, deposition time and electric field intensity, were mainly investigated and optimized in terms of electrochemical characteristic and desalination performance of the deposited CNT electrode. The SEM image shows that the CNT material was deposited homogeneously on the current collector and a non-crack surface of the electrode was obtained. An optimal preparation condition of the deposited CNT electrode was obtained and specified as the Al(NO3)3 M concentration of 1.3 × 10~(-2) mol/L, the deposition time of 30 min and the electric field intensity of 15 V/cm. The obtained electrode performs an increasing specific mass capacitance of 33.36 F/g and specific adsorption capacity of 23.93 mg/g, which are 1.62 and 1.85 times those of the coated electrode respectively. The good performance of the deposited CNT electrode indicates the promising application of the EPD methodology in subsequent research and fabrication of the CDI electrodes for CDI process. 相似文献
9.
煤化工生产过程中产生的"三废"对环境和人体危害很大。列举了目前国内煤化工生产过程中"三废"的防治和综合利用技术。 相似文献
10.
嘉陵江三大水系边滩沉积物磁性特征及其物源指示意义 总被引:1,自引:0,他引:1
通过2009年夏季采集的嘉陵江三大水系边滩沉积物样品的磁性测量,结合粒度分析,探讨了三江沉积物磁学特征的差异.结果表明,三大水系沉积物中磁性矿物除磁铁矿外,还含有丰富的赤铁矿,反映了四川盆地中生代紫色砂页岩作为嘉陵江水系泥沙来源的特点.嘉陵江干流由于上游黄土的输入,其磁铁矿对样品磁性特征的贡献最为显著.磁性参数x,SI... 相似文献