首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
To investigate the optimum calcination temperature and cementitious properties of gangue, the microstructure of clay-containing gangue calcined at different temperatures was analyzed by X-ray diffraction (XRD), infrared spectroscopy (IR), and magnetic angle spinning nuclear magnetic resonance (MAS NMR). The results show that the structure of kaolinite in the gangue sample calcined at 500℃ is destroyed. The XRD spectra show the disappearance of illite at about 800℃ and the formation ofmullite at about 1000℃. With the increase in calcination temperature, octahedral (6-coordinated) aluminum is transformed to tetrahedral (4-coordinated) aluminum gradually. For the gangue sample calcined at 700℃, the 29Si MAS NMR sharp peak of Q4 (framework silicate-quartz) is left. Compared with kaolinite in gangue, the thermal transformed temperature of pure kaolinite is lagged. On the basis of the microstructure and cementitious properties of calcined gangue, the results can be concluded, in order to obtain metakaolinite, the optimum calcination temperature of this gangue is about 500℃, and the optimum temperature is about 700℃ for activated SiO2 and Al2O3.  相似文献   

2.
The Al-rich waste with aluminium and hydrocarbon as the major contaminant is generated at the wastewater treatment unit of a polymer processing plant. In this research, the heat treatment of this Al-rich waste and its use to adjust the silica/alumina ratio of the high calcium fly ash geopolymer were studied. To recycle the raw Al-rich waste, the waste was dried at 110℃ and calcined at 400 to 1000℃. Mineralogical analyses were conducted using X-ray diffraction (XRD) to study the phase change. The increase in calcination temperature to 600, 800, and 1000℃ resulted in the phase transformation. The more active alumina phase of active θ-Al2O3 was obtained with the increase in calcination temperature. The calcined Al-rich waste was then used as an additive to the fly ash geopolymer by mixing with high calcium fly ash, water glass, 10 M sodium hydroxide (NaOH), and sand. Test results indicated that the calcined Al-rich waste could be used as an aluminium source to adjust the silica/alumina ratio and the strength of geopolymeric materials. The fly ash geopolymer mortar with 2.5wt% of the Al-rich waste calcined at 1000℃ possessed the 7-d compressive strength of 34.2 MPa.  相似文献   

3.
采用溶胶-凝胶法制备Eu~(3+)掺杂Y_3Al_5O_(12)的红色荧光粉,以不同的温度煅烧发现,在700℃煅烧的样品为非晶,已开始出现荧光性能,到1000℃时出现Y_3Al_5O_(12)纯相,随着煅烧温度的升高,样品的结晶度变好,晶粒长大,荧光强度增强,但温度达到1300℃时,样品的荧光强度稍有下降.对1000℃煅烧所得的样品进行低温二次煅烧处理表明,处理后的样品的物相和形貌无明显变化,但晶粒排列更有序,Eu~(3+)更均匀的置换Y~(3+)格点位置,同时也减少了表面缺陷,使荧光性能有明显增强.  相似文献   

4.
 硫酸盐化是导致铅酸电池失效的原因之一,因此通过硫酸铅脱硫煅烧制备具有电化学活性的氧化铅具有重要意义.本文提出了一种把硫酸铅通过与碳酸铵反应和煅烧来转化为铅酸电池正极材料的方法.首先,反应得到的碳酸铅经过过滤,在350℃下煅烧得到具有电化学活性的氧化铅.随后对此法制备的样品与工厂生产电池所用的球磨铅粉分别进行了X射线粉末衍射、扫描电镜等分析,通过充放电性能测试得出制备的电极材料的容量高于工厂铅粉的结论,之后通过比较不同煅烧温度下的电性能来对制备样品的煅烧温度进行探讨并得出制备样品的最佳煅烧温度.在最佳条件下制备的氧化铅颗粒均匀,大小在200~300nm,作为铅酸电池正极材料,具有较高的放电比容量(放电倍率为0.5C时放电比容量为120mA·h/g),最后对充放电之后的样品进行了X射线粉末衍射分析.  相似文献   

5.
Ferronickel enrichment and extraction from nickel laterite ore were studied through reduction and magnetic separation. Reduction experiments were performed using hydrogen and carbon monoxide as reductants at different temperatures (700–1000°C). Magnetic separation of the reduced products was conducted using a SLon-100 cycle pulsating magnetic separator (1.2 T). Composition analysis indicates that the nickel laterite ore contains a total iron content of 22.50wt% and a total nickel content of 1.91wt%. Its mineral composition mainly consists of serpentine, hortonolite, and goethite. During the reduction process, the grade of nickel and iron in the products increases with increasing reduction temperature. Although a higher temperature is more favorable for reduction, the temperature exceeding 1000°C results in sintering of the products, preventing magnetic separation. After magnetic separation, the maximum total nickel and iron concentrations are 5.43wt% and 56.86wt%, and the corresponding recovery rates are 84.38% and 53.76%, respectively.  相似文献   

6.
CrN microspheres were synthesized by using a cathodic arc plasma source system. The obtained samples were annealed in air at temperatures of 300-800 ℃ for 60 min. The influence of annealing temperature on the microstructure and surface morphology of the CrN microspheres was investigated. The CrN microspheres were characterized by means of scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. The results show that the CrN nanoparticles arranged into leaf-like structures before annealing. With the rising of the annealing temperature, the size of CrN crystal nanoparticals became larger. When the annealing temperature exceeded the oxidation point(500 ℃), the CrN was oxidized and the leaf-like structure was broken. With further increase of the annealing temperature(700 ℃), the arrangement of CrN nanoparticles was changed from leaf-like structure to be discrete.  相似文献   

7.
The reduction of ilmenite concentrate by hydrogen gas was investigated in the temperature range of 500 to 1200℃. The microstructure and phase transition of the reduction products were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical microscopy (OM). It was found that the weight loss and iron metallization rate increased with the increase of reduction temperature and reaction time. The iron metallization rate could reach 87.5% when the sample was reduced at 1150℃ for 80 min. The final phase constituents mainly consist of Fe, M3O5 solid solution phase (M=Mg, Ti, and Fe), and few titanium oxide. Microstructure analysis shows that the surfaces of the reduction products have many holes and cracks and the reactions take place from the exterior of the grain to its interior. The kinetics of reduction indicates that the rate-controlling step is diffusion process control with the activation energy of 89 kJ·mol-1.  相似文献   

8.
A novel two-step method for the synthesis of monoclinic titanium oxide (i.e. TiO2(B)) nanosheets is presented in this report. The method is featured by two steps: 1) synthesis of hydrogen titanate nanosheets, followed by 2) calcination of the titanate nanosheets at elevated temperatures. The hydrogen titanate nanosheets were prepared first by autoclaving anatase TiO2 powders, obtained by air cal- cining an ethanol-gel of Ti(OH)4 at 500℃, in aqueous NaOH (10 mol/L) at 150-200℃, and then by washing with hydro- chloric acid under supersonic irradiation. While sizes of the nanosheets were found to increase with increasing the temperature of the hydrothermal treatment, the calcination at 400-500℃ of the hydrogen titanate nanosheets that were synthesized at higher autoclaving temperatures (180-200℃) produced monoclinic TiO2 nanosheets with a uniform morphology. By contrast, the same calcination of the titanate nanosheets synthesized at the autoclaving temperature 180℃ led to anatase TiO2 nanoparticles.  相似文献   

9.
The production of geopolymer binders from low-purity clays was investigated. Three low-purity clays were calcined at 750℃ for 4 h. The calcined clays were chemically activated by the alkaline solutions of NaOH and Na2SiO3. The compressive strength was measured as a function of curing time at room temperature and 85℃. The results were compared with those of a pure kaolin sample. An amorphous aluminosilicate polymer was formed in all binders at both processing temperatures. The results show that, the mechanical properties depend on the type and amount of active aluminum silicates in the starting clay material, the impurities, and the processing temperature.  相似文献   

10.
Calcination and acid leaching of coal kaolin were studied to determine an effective and economical preparation method of calcined kaolin. Thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffraction (XRD) demonstrated that 900℃ was the suitable temperature for the calcination. Leaching tests showed that hydrochloric acid was more effective for iron dissolution from raw coal kaolin (RCK), whereas oxalic acid was more effective on iron dissolution from calcined coal kaolin (CCK). The iron dissolution from CCK was 28.78wt%, which is far less effective than the 54.86wt% of RCK under their respective optimal conditions. Through analysis by using M?ssbauer spectroscopy, it is detected that nearly all of the structural ferrous ions in RCK were removed by hydrochloric acid. However, iron sites in CCK changed slightly by oxalic acid leaching because nearly all ferrous ions were transformed into ferric species after firing at 900℃. It can be concluded that it is difficult to remove the structural ferric ions and ferric oxides evolved from the structural ferrous ions. Thus, iron removal by acids should be conducted prior to calcination.  相似文献   

11.
The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies have been conducted to recycle and eliminate waste plastics. The potential for recycling waste plastics in the iron and steel industry has been underestimated; the high C and H contents of plastics may make them suitable as alternative reductants in the reduction process of iron ore. This study aims to substitute plastic wastes for coal in reduction melting process and to investigate their performance during reduction at high temperature. We used a common type of waste plastic, polyethylene terephthalate (PET), because of its high carbon and hydrogen contents. Composite pellets containing PET wastes, coke, and magnetite iron ore were reduced at selected temperatures of 1400 and 1450°C for reduction time from 2 to 10 min to investigate the reduction melting behavior of these pellets. The results showed that an increased temperature and reduction time increased the reduction ratio of the pellets. The optimum experimental conditions for obtaining metallic iron (iron nuggets) were reduction at 1450°C for 10 min using composite pellets containing 60% PET and 40% coke.  相似文献   

12.
采用四氯化锡与氢氧化钠在92℃下直接沉淀法制备了纳米级Sn02,经不同温度处理得到性质不同的Sn0:样品研究了处理温度对Sn02性质和紫外光(254 nm)照射下降解亚甲基蓝(MB)效率的影响结果显示:200℃处理样品的降解率最高,超过该温度后,随着处理温度的升高,Sn0:的粒径逐渐增大,比表面依次减小,表面吸附的经基或水的数量减少,则样品的降解率逐渐减刁丫Sn02降解MB的反应为拟一级反应,满足Langmuir-Hinshelwood模型,且在UV/Sn0:降解体系中,经自由基OH·为主要的活性体,它与MB反应导致其最终分解为COZ , H20和无机酸根离子等无害物质.  相似文献   

13.
Nanocrystalline powders of ZrO2–8mol%SmO1.5(8SmSZ), ZrO2–8mol%GdO1.5 (8GdSZ), and ZrO2–8mol%YO1.5 (8YSZ) were prepared by a simple reverse-coprecipitation technique. Differential thermal analysis/thermogravimetry (DTA/TG), Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM) were used to study the phase transformation and crystal growth behavior. The DTA results showed that the ZrO2 freeze-dried precipitates crystallized at 529, 465, and 467°C in the case of 8SmSZ, 8GdSZ, and 8YSZ, respectively. The XRD and Raman results confirmed the presence of tetragonal ZrO2 when the dried precipitates were calcined in the temperature range from 600 to 1000°C for 2 h. The crystallite size increased with increasing calcination temperature. The activation energies were calculated as 12.39, 12.45, and 16.59 kJ/mol for 8SmSZ, 8GdSZ, and 8YSZ respectively.  相似文献   

14.
A porous Co_3O_4 with a particle size of 1–3 μm was successfully prepared by heating Co-based metal organic frameworks MOF-74(Co) up to 500 °C in air atmospheric conditions. The as-prepared porous Co_3O_4 significantly reduced the dehydrogenation temperatures of the LiBH_4-2LiNH_2 system and improved the purity of the released hydrogen. The LiBH_4-2LiNH_2-0.05/3Co_3O_4 sample started to release hydrogen at 140 °C and released hydrogen levels of approximately 9.7 wt% at 225 °C. The end temperature for hydrogen release was lowered by 125 °C relative to that of the pristine sample. Structural analyses revealed that the as-prepared porous Co_3O_4 is in-situ reduced to metallic Co, which functions as an active catalyst, reducing the kinetic barriers and lowering the dehydrogenation temperatures of the LiBH_4-2LiNH_2 system. More importantly, the porous Co_3O_4-containing sample exhibited partially improved reversibility for hydrogen storage in the LiBH_4-2LiNH_2 system.  相似文献   

15.
采用机械研磨方法制备前驱体,再将前驱体进行煅烧得到NiFe2O4纳米粉.重点研究了煅烧温度对粉体物相和形貌的影响以及固相反应过程与机理.结果表明:煅烧过程中晶粒长大活化能为12.08 k J·mol-1,主要以界面扩散为主;煅烧温度为700℃时粉体团聚严重,颗粒之间存在片状非晶态化合物,结晶度低;750℃煅烧1 h得到的NiFe2O4纳米粉物相单一,粒径分布在35~85 nm之间,温度过高时晶粒明显长大;机械研磨洗涤后前驱体主要由Fe2O3,NiO和NiFe2O4组成,反应产物结晶度低,反应不完全;盐颗粒的存在能抑制晶粒生长,减小产物粒径.  相似文献   

16.
对冷变形后的Co36Fe36Cr18Ni8Ti2合金在700 ℃和800 ℃下再结晶退火,制备成具有高强度及良好耐蚀性的多主元合金。采用电子背散射衍射(electron back-scattered diffraction, EBSD)表征了合金的相分布、再结晶组织以及晶界分布等微观结构特征,采用静态拉伸试验测试了合金的力学性能。结果表明,700 ℃退火的合金断后伸长率较低,但其抗拉强度与屈服强度分别达到了1 038和956 MPa。采用电化学工作站与扫描电子显微镜(scanning electron microscope, SEM)表征了合金在模拟体液中的耐蚀性。结果表明,700 ℃退火的样品具有较好的耐蚀性,腐蚀后的样品表面较为均匀。结合力学性能可知,700 ℃退火的样品具有作为新型医用金属材料的潜力。  相似文献   

17.
LnZrOx(Ln: La, Sm) mixed oxides of Ln: Zr = 1 were prepared by different methods(complex polymerized method, sorption of cations on starch from aqueous salt solution and conventional co-precipitation with additional redispersion of precipitate by ultra sound) and calcined at 700–1300 °C. Their specific structural features and changes were studied and discussed. Various characterization methods were used such as X-ray diffraction,Electron microscopy, Fourier-transform infrared and Raman spectroscopy, UV–Vis spectroscopy, X-Ray absorption fine structure and X-ray photoelectron spectroscopy.The formation of pyrochlore structure occurred at 1100–1300 °C from fluorite-like pseudocubic phase ZrO_2 regardless the method of preparation. This phase had a block-like structure consisting of ZrO_2 nanocrystals stabilized by Ln cations and residual anions such as hydroxyls and carbonates. The desorption of such anions with heating already started at 900 °C and lead to local changes of Zr cations coordination to octahedral and to the formation of pyrochlore nanodomains inclusions within fluorite-like phase. The increased cation mobility and further elimination of anions caused by further heating was accompanied by the formation of bulk pyrochlore phase at 1100–1300 °C. Even after calcination at 1300 °C the local microheterogeneity as well as defects were identified at domains boundaries or sintered microstructure. These specific features of the formed pyrochlores depend on the method of preparation.  相似文献   

18.
The kinetics of removal of loss on ignition (LOI) by thermal decomposition of hydrated minerals present in natural iron ores (i.e., kaolinite, gibbsite, and goethite) was investigated in a laboratory-scale vertical fluidized bed reactor (FBR) using isothermal methods of kinetic analysis. Experiments in the FBR in batch processes were carried out at different temperatures (300 to 1200℃) and residence time (1 to 30 min) for four different iron ore samples with various LOIs (2.34wt% to 9.83wt%). The operating velocity was maintained in the range from 1.2 to 1.4 times the minimum fluidization velocity (Umf). We observed that, below a certain critical temperature, the FBR did not effectively reduce the LOI to a desired level even with increased residence time. The results of this study indicate that the LOI level could be reduced by 90% within 1 min of residence time at 1100℃. The kinetics for low-LOI samples (<6wt%) indicates two different reaction mechanisms in two temperature regimes. At lower temperatures (300 to 700℃), the kinetics is characterized by a lower activation energy (diffusion-controlled physical moisture removal), followed by a higher activation energy (chemically controlled removal of LOI). In the case of high-LOI samples, three different kinetics mechanisms prevail at different temperature regimes. At temperature up to 450℃, diffusion kinetics prevails (removal of physical moisture); at temperature from 450 to 650℃, chemical kinetics dominates during removal of matrix moisture. At temperatures greater than 650℃, nucleation and growth begins to influence the rate of removal of LOI.  相似文献   

19.
选用Ce-Ni/Co作催化剂、由醋酸钙煅烧制得的Ca O作重整催化剂、CO2吸附剂,进行模拟生物油吸附强化蒸汽重整制氢的研究.实验结果表明:在相同温度、M(S)/M(C)(加入水蒸气的摩尔质量与生物油模化物中碳的摩尔质量之比)条件下,吸附剂的加入有利于提高氢气摩尔分数和氢气产率;添加吸附剂后,随着温度的升高,氢气摩尔分数、氢气产率均呈现先增大后减小的趋势,在700℃时达到最大;随着M(S)/M(C)的增加,氢气摩尔分数先增大后减小,在M(S)/M(C)=9时氢气摩尔分数达到最大,而氢气产率则在M(S)/M(C)超过9后变化不大;随着M(Ca O)/M(C)(加入的氧化钙的摩尔质量与生物油模化物中碳的摩尔质量之比)的增加,氢气摩尔分数逐渐增大,达到M(Ca O)/M(C)=3后几乎不变,氢气产率则先增大后减小,在M(Ca O)/M(C)=3时达到最大;温度=700℃,M(S)/M(C)=9,M(Ca O)/M(C)=3为模拟生物油重整制氢的最佳条件,在此条件下氢气摩尔分数、氢气产率分别达到92.2%,84.1%.  相似文献   

20.
一水硬铝石矿活化焙烧工艺研究   总被引:1,自引:0,他引:1  
利用马弗炉对我国一水硬铝石矿进行了活化焙烧的实验研究,以降低拜耳法溶出的温度.研究了焙烧温度、焙烧时间等因素对铝土矿的溶出性能的影响,将活化焙烧矿的溶出性能与原矿的溶出性能进行了对比.利用SEM技术对活化焙烧矿的微观形貌进行表征.实验结果表明:合适的活化焙烧工艺条件为焙烧温度585℃,焙烧时间60 min.在此焙烧条件下,当达到最大溶出率时,焙烧矿的溶出温度较原矿下降了40℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号