首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 359 毫秒
1.
在扁形双P型辐射管的基础上,研究了扁双P型辐射管的中心管的等效半径、支管的等效半径、中心管和支管间距、管长等结构尺寸对辐射管性能的影响.通过建立正交试验方案对辐射管结构尺寸以及燃烧器喷口结构位置进行优化.结果表明,影响辐射管表面温差的最明显因素依次:中心管与支管的间距、中心管等效半径、管长和支管等效半径;影响辐射管辐射功率的明显因素依次:管长、中心管等效半径、中心管与支管的间距和支管的等效半径.上下空气喷口与左右空气喷口大小比例在7:3和9:1比较接近,辐射管的性能参数最好;左右空燃气喷口间距为50mm,上下空气喷口间距在60mm的情况下辐射管表面的温度不均匀系数最小,为0.058.  相似文献   

2.
为了对分区分级双P型燃气辐射管喷口结构、位置进行优化,提高燃烧效率.首先对分区分级双P型燃气辐射管进行了实验和数值研究,结果发现,除NOx体积分数的误差为11.6%外,其他参数的偏差都在1%以内,证明该模型具有可靠性.在此基础上,通过研究主管和支管的喷口位置及喷口结构等参数,进行了气体温度和壁面温度的研究分析.结果显示:随着主管喷口位置向外移动,分区分级燃气辐射管表面温度的最高值逐渐减小,壁面温度的最低值逐渐增大.支管喷口位于三通管与支管交线处时,可以减少高温气体对辐射管管壁的冲击作用,提高支管径向的温度均匀性,延长辐射管使用寿命;主管喷口的形式为完全预混式喷口时,壁面温差最小;支管喷口的形式为不对称式时,分区分级燃气辐射管壁面温差最小,燃烧热效率最高.  相似文献   

3.
针对冷冻靶丸装配工艺误差导致靶丸表面温度特性变化的问题,建立带充气管的三维模型,基于Boussinesq假设和离散坐标辐射模型,采用数值模拟方法,研究了靶丸及充气管在竖直和水平方向进行偏移时靶丸表面温度分布的变化,并分析比较了充气管、辅助加热及辐射对靶丸偏移敏感性的影响。结果表明:充气管对靶丸表面温度均匀性影响显著,相较于无充气管结构,具有单充气管和对侧双充气管的靶丸其外表面最大温差分别增大78.9%、76.7%;对于具有充气管结构的靶丸,存在使均匀性改善的最佳偏移工况;单充气管结构靶丸竖直向上适当偏移时,靶丸表面温度均匀性更好,最佳偏移距离为5μm,且单充气管结构在水平方向容许向左112μm的偏移;随着加热功率增大,竖直方向最佳偏移距离基本不变,但靶丸对水平方向装配工艺误差的容忍度增大;封口膜透射率越大,靶丸位置偏移越敏感,相同偏移距离下靶丸表面最大温差越大。  相似文献   

4.
本文首先对双P型辐射管进行实验和数值研究,发现除NOx含量的误差偏大外,其他参数的偏差都在1%以内,证明该模型具有一定的可靠性.在此基础上,将空气分级的理念应用于双P型辐射管,提出一种带支管喷口的分区分级燃气辐射管,并建立相应的数学和物理模型.对比双P型辐射管和分区分级辐射管的模拟结果显示:分区分级燃气辐射管和双P型辐射管内气体的平均流速分别为25.8 m·s-1和21.0 m·s-1,热效率分别为65.9%和64.2%;分区分级燃气辐射管壁面最高温度为1047℃,壁面最大温差为73℃,比双P型辐射管降低15℃,分区分级后气体平均流速增大,提高了直管和回流管管段的烟气温度和壁面温度,具有更好的温度均匀性.  相似文献   

5.
采用现有的双P型辐射管进行燃烧实验,并进行相应的CFD仿真对比,结果显示NOx体积分数的数值计算与试验结果误差最大为3.6%,其他参数的偏差均在1%以内.将空气分级的理念应用于双P型辐射管,设计一种带支管的分区分级燃气辐射管,并对其流动和传热特性进行仿真研究.结果表明:支管通入空气量占总空气量的25%时,辐射管壁面温差最大,热效率最高;支管通入燃气量为20%时,辐射管壁面温差最小,壁面温度均匀性最好;支管以相同空燃比同时通入空气和燃气,且支管通入空燃气量为总燃气量的25%时,整个辐射管内气体温度分布最均匀;支管通入空燃气量占总气体量从5%增加到35%的过程中,壁面温差先降低后缓慢增加,支管通入燃气量为20%时辐射管壁面温差最小.  相似文献   

6.
为了研究直通式真空集热管内的换热特性以及影响集热管性能的因素,建立从吸收管到外界环境的不同阶段的传热数学模型,对每个传热阶段进行分析与计算;当吸收管内外表面温度一定时,导热量随着壁厚度的增加而减少,吸收管外径与内径比为1. 05时的导热量只有1. 02时的1/3;吸收管的导热系数与吸收管自身温度有关,单位温差下吸收管温度每提高100℃,导热量就会增加约163 W/m;吸收管与玻璃管之间对流换热量主要受环形区域压力影响;辐射换热量受吸收管外表面温度影响较大,金属吸收管的发射率会随着温度提高而增加;玻璃外管温度越高,环境温度越低,辐射换热量越大;环境风速的增加会强化对流换热系数,增加热损失.  相似文献   

7.
采用传导与辐射耦合传热模型,对晶圆片内传热过程进行了数值模拟,研究了热传输特性变化对于晶圆片表面温度非均匀性的影响.结果表明:硅与掺杂硅导热系数的提高有助于减小沿晶圆片表面的温差,而总的温度水平变化很小;当吸收系数从104降至103 m-1时,晶圆片顶部表面的温度水平和温差骤降,当吸收系数等于103 m-1时,温度水平和温差变化不大;发射率对于晶圆片顶部表面温度水平和温差具有主要影响,提高发射率可以轻易增加晶圆片表面的温度水平;使用改善后特性数据,总的温度水平较基础算例降低约200K.研究结果有助于认识快速热处理工艺中能量传输过程、改善温度监测和控制水平.  相似文献   

8.
研究了一种采用纳米流体直接吸收太阳辐射的聚光型中温集热器.建立了纳米流体集热过程能量传递和聚光器辐射热流分布的数学模型,测试了添加不同质量分数纳米颗粒的Cu O-导热油纳米流体的吸光系数,进而对非均匀聚光条件下纳米流体直接吸收式集热器(NDASC)特性进行了CFD模拟.分析了40~150℃范围内不同纳米颗粒质量分数对NDASC管内温度分布和集热效率的影响规律.结果表明:NDASC集热管周向温差明显低于传统间接吸收式集热器,但随着纳米颗粒质量分数的提高,纳米流体吸光系数增大,管内温度分布的不均匀性加剧;集热效率则随纳米颗粒质量分数的增大呈现先升后降的趋势,得出了集热性能最佳的纳米颗粒质量分数范围.  相似文献   

9.
针对微充气管内残留燃料冰影响冷冻靶控温过程这一问题,建立了基于Boussinesq假设和离散坐标辐射模型的三维数学模型,分析了管内残留燃料冰长度对基准、辅助加热以及快速降温3种工况下靶丸表面温度均匀性以及稳定性的影响。结果表明:基准稳态工况下,靶丸表面最大温差随管内燃料冰长度增长先降低后升高,燃料冰末端与靶丸外表面齐平(长度为0.09 mm)时,最大温差最小,相比于无燃料冰降低31.5%;施加7 500 W/m2辅助热流的瞬态工况下,管内残留燃料冰长度不同时,靶丸表面最大温差随时间变化均表现为先增大后减小直至稳定不变,燃料冰长度较短(≤0.09 mm)时,靶丸表面均匀性恶化程度较轻;以6 K/min进行线性快速降温过程中,管内燃料冰长度为0.09 mm时,降温过程中稳定性最好,降温结束时均匀性最佳;当管内燃料冰长度为0.09 mm时,3种控温工况下靶丸表面温度均匀性及稳定性均较好,可达到较好的控温效果。  相似文献   

10.
为提高装配式辐射供冷顶板的性能,建立了一种采用空气层进行热量交换的装配式辐射供冷顶板的数学模型,应用CFD(computational fluid dynamics)技术,数值模拟了耦合冷冻水管辐射顶板空气层的流场和温度场,分析了不同空气层厚度和不同供水温度对辐射顶板热特性的影响.数值模拟结果表明:空气层内由于温度差引起自然对流,辐射板内通过辐射,对流和导热的传热方式,使辐射板表面温度分布更均匀.在保证辐射板表面最低温度高于室内露点温度的条件下,随着空气层厚度和供水温度的增加,辐射板的表面平均温度升高,供冷能力下降.空气层厚度和供水温度的增加或减小会降低辐射板表面温度分布的均匀性.  相似文献   

11.
Experimental study of partially flattened axial grooved heat pipes   总被引:1,自引:0,他引:1  
This article made experimental study on mini-axial grooved heat pipes (AGHP) with 11 flattening forms. It analyzed how the flattening form, flattening thickness and working temperature affect axial tamperature distribution, thermal resistance, heat transfer limit and the phase-change heat transfer coefficients in evaporator and condenser sections. The result indicates that all forms of AGHPs can maintain good isothermal performance under normal operating condition. The geometric shape of AGHP has obvious impact on heat transfer limit. With respect to an AGHP with 2 mm-thick evaporator section, when the thickness of its condenser section increases from 2 to 3 mm, its heat transfer limit Increases by 81%; with respect to an AGHP with 3 mm-thick evaporator section, when the thickness of its condenser section increases from 2 to 3 mm, its heat transfer limit increases by 134%; with respect to an AGHP with 4 mm-thick condenser section, when the thickness of its evaporator section increases from 2 to 3 mm, its heat transfer limit increases by 26%. When the thickness of the evaporator section increases by 1 mm, the heat transfer limit will increase by 9%-26%, while when the thickness of the condenser section increases by 1 mm, the heat transfer limit will increase by 20%-86%. The thickness of the condenser section has greater impact on heat transfer performance of an AGHP than the thickness of the evaporator section does. The study content of this article will help understand the heat transfer performance of AGHP, and electronic thermal design process.  相似文献   

12.
U型辐射管的表面温度分布   总被引:1,自引:0,他引:1  
本文分析了影响大型辐射管表面温度分布的因素,通过实验说明,对于单端吸入空气的扩散型燃烧辐射管,使用芯块可以明显地提高燃料的利用率,较好地控制空气消耗系数,强化气体与辐射管管壁之间的对流传热,从而改善辐射的表面温度分布。  相似文献   

13.
为了提高基于液体过滤分频光热光电系统的效率及能源品位,以光热单元中石英管为主要研究对象,使用蒙特卡洛法对系统的光学性能进行模拟,重点研究石英管几何参数对透光效率及接收面光斑均匀性的影响。结果表明,较方形石英管工况,圆形石英管工况中接收面上的光斑更均匀,透光效率更高;随管径的增大,圆形石英管透光效率降低,光斑均匀性无明显变化;在石英管内外壁面之间设置真空层,可增加石英管的保温效果,但系统的透光效率显著降低。  相似文献   

14.
压扁厚度对压扁型烧结式微热管性能的影响   总被引:1,自引:0,他引:1  
对不同压扁厚度的压扁型烧结式微热管进行了实验研究,优化了压扁厚度为5 mm(真空腔厚度为3 mm)时微热管的工质量,分析了在相同工质量下压扁厚度对微热管轴向温度分布、极限传输功率、各部分温差和热阻的影响.结果表明:对于比完全充满吸液芯时的充液量略少的工质量,压扁厚度只对极限传输功率略有影响;压扁厚度为5、4、3 mm时,极限传输功率分别为40、50、60 W.而对于比完全充满吸液芯时的充液量略多的工质量,压扁厚度的减少会使微热管性能下降,压扁厚度从5 mm减少至4 mm时,热阻从约0.15℃/W提高至约0.20℃/W,压扁厚度为3mm时,微热管失效.文中还对各种实验结果的原因进行了分析,发现压扁厚度主要是通过改变管内工质的分布状况来影响微热管性能的.  相似文献   

15.
针对四排等管径圆管直接空冷凝汽器冬季因换热不均易产生冻结的情况,提出了采用变管径翅片管束的思想。用计算流体力学(CFD)方法,对变管径翅片管束的流动换热特性进行数值模拟。研究发现,变管径翅片管束相比于等管径翅片管束,换热均匀性大幅提升,综合性能也有所提高;为提高该类换热器换热性能,将管束排布方式由近等边变化到近等速,凝汽器综合性能增大而换热均匀性变化不明显;在近等速排列变管径管束的翅片上加装涡发生器,综合性能进一步提高,换热均匀性对雷诺数的敏感性有所改变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号