首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
在Gleeble-3800热模拟试验机上进行大变形等温压缩试验,研究Cr-Co-Mo-Ni齿轮钢的高温热变形行为和显微组织,分析材料流变应力与变形温度和应变速率的关系,建立热变形过程的本构方程和热加工图.该材料的流变应力随着温度的升高而下降,随应变速率的增加而增加;用双曲正弦函数式可描述其在热变形过程中的流变应力,热变形活化能为487.21kJ·mol-1;热加工图显示的适宜加工区间为温度1000~1100℃,应变速率0.1 ~1s-1.在热模拟试验基础上进行该钢种锻造工艺的有限元模拟,并结合热加工图分析初锻温度和加工道次对于锻件温度和应变速率的影响,得出适宜的模锻工艺参数为初锻温度1000~1100℃,锻造道次15次.  相似文献   

2.
对BFe30-1-1合金在变形温度为750~1000℃,应变速率为0.01~10s—1的条件下使用Gleeble-1500D热模拟机进行高温热压缩试验,研究其热加工行为.获得了该合金在高温下的真应力-真应变曲线,并分析了其流变应力的变化规律.构建了BFe30-1-1合金的热变形方程,基于动态材料模型绘制其热加工图,并结合热压缩后的合金微观组织分析热加工图.结果表明:变形条件对加工图有明显影响,在较低的应变速率和较高的温度条件下,能量耗散效率较大.在应变量分别为0.2、0.4、0.6、0.8的热加工图基础上,分析合金在不同变形条件下的动态再结晶组织特性及流变失稳显微组织,最终得到该合金最佳热加工温度为830~950℃,应变速率为0.01~0.05s—1.  相似文献   

3.
高锰TRIP钢热变形行为研究   总被引:1,自引:0,他引:1  
通过单轴压缩实验,研究了高锰TRIP钢(Fe15Mn3Si3Al)在800~1050℃温度范围内、应变速率ε.=0.01~5.0s-1条件下的热变形行为和组织变化,讨论了热变形参数对流变应力和显微组织的影响.结果表明:动态再结晶只在较高变形温度和低应变速率下发生.实验钢对温度和应变速率都很敏感,而应变速率对实验钢的热变形行为影响较大.高锰TRIP钢的表观应力指数n=3.909,变形激活能Q=353.167kJ/mol.根据实验数据,建立了高锰TRIP钢高温变形的热加工方程.  相似文献   

4.
为了解决Cr20 Ni80电热合金锻造开裂的问题,在Gleeb-1500D热模拟试验机上对该合金进行热压缩试验,研究变形温度为900~1220℃,应变速率为0.001~10 s-1条件下的热变形行为,并根据动态材料模型建立合金的热加工图.合金的真应力-真应变曲线呈现稳态流变特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中稳态流变应力可用双曲正弦本构方程来描述,其激活能为371.29 kJ·mol-1.根据热加工图确定了热变形流变失稳区及热变形过程的最佳工艺参数,其加工温度为1050~1200℃,应变速率为0.03~0.08 s-1.优化的热加工工艺在生产中得到验证.  相似文献   

5.
为研究2Cr12Ni Mo1W1V超临界马氏体不锈钢的高温变形行为,对其进行热压缩试验,得到其在变形温度为1 123~1 373 K,应变速率为0.005~5 s-1的真应力-真应变曲线,对流变应力特征进行研究,分析其高温变形的物理本质。采用Zener-Hollomon参数法构建动态材料模型(DMM),以热压缩试验为基础,建立不同应变下的热加工图。根据变形稳定阶段的热加工图确定该马氏体不锈钢热变形的失稳区和安全区。研究结果表明:采用该合金的高温塑性变形本构模型所得预测值与实验值拟合程度高,表明该合金在热变形过程中的流变应力可用构建的双曲正弦本构模型来描述;热加工图受变形量影响较大,当变形较小时,安全区随着应变增加而发生迁移,变形进入稳定阶段后,安全区保持恒定;在低温高应变区(温度为1 200~1 280 K,应变速率为1~5 s-1)以及高温低应变区(温度为1 320~1 400 K,应变速率为0.1~0.3 s-1)这2个区域为变形安全区,适合2Cr12Ni Mo1W1V超临界马氏体不锈钢进行热加工。  相似文献   

6.
纯镍N6平面热压缩变形行为及加工图   总被引:1,自引:0,他引:1  
利用Gleeble-3800热模拟试验机对纯镍N6在变形温度800~1100℃,应变速率5~40 s-1,应变量70%条件下进行了高温塑性变形压缩试验,分析纯镍N6高温高应变速率热变形行为,得到了材料在不同变形参数条件下的组织变化规律及流变应力变化曲线,利用动态材料模型绘制出了纯镍N6在不同应变条件下的热加工图。通过对组织及热加工图的分析研究,得出变形温度为1000~1100℃,应变速率为5~7 s-1或20~40 s-1以及变形温度为800~900℃,应变速率为5~10 s-1为纯镍N6材料高温高应变速率热变形的两个合理变形参数区间,在参数区间内N6组织均匀;而流变失稳区变形参数条件下得到的组织比较紊乱,晶粒大小不一。纯镍N6热变形后的晶粒尺寸随变形温度升高及应变速率减小而增大。  相似文献   

7.
采用Gleeble-1500热模拟试验机进行了T91钢的压缩试验,研究了变形温度为1100~1250℃、应变速率为0.01~1 s-1时该钢的变形行为,分析了流变应力与应变速率和变形温度之间的关系,计算了高温变形时应力指数和变形激活能,并采用Zener-Hollomon参数法构建该钢高温塑性变形的本构关系,绘制了动态再结晶图和热加工图.结果表明:在试验变形条件范围内,其真应力-真应变曲线呈双峰特征;钢中发生了明显的动态再结晶,且再结晶类型属于连续动态再结晶.T91钢的热变形激活能为484 kJ.mol-1,利用加工图确定了热变形的流变失稳区,结合力学性能,可以优先选择的变形温度为1200~1 250℃,应变速率不高于0.1 s-1.  相似文献   

8.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,在变形温度650~850℃、应变速率0.001~10 s-1和总压缩应变量50%的条件下,对Cu-Cr-Zr合金的流变应力行为进行研究.通过应力-应变曲线和显微组织图分析了合金在不同应变速率、不同应变温度下的变化规律.结果表明:应变速率和变形温度对合金再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也同样容易发生动态再结晶,并且对应的峰值应力也越小.从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程.研究分析Cu-Cr-Zr合金的热加工性能,可为生产实践提供理论指导与借鉴.  相似文献   

9.
通过单道次压缩试验,对Fe-Mn-C系孪生诱导塑性钢(TWIP钢),在800~1 000℃,应变速率0.01~10.0 s-1条件下的热变形行为及组织演变规律进行了研究.实验结果表明,升高温度和降低应变速率均可促进奥氏体发生动态再结晶.根据实验所得流变应力曲线,由热变形方程计算得到了TWIP钢热变形激活能Q=421.37 kJ/mol.并在此基础上得到了TWIP钢高温变形的热加工方程.采用Z参数预测了动态再结晶的临界条件,当Z≤9.94×1018时TWIP钢易发生动态再结晶,具有较好的热加工性能.  相似文献   

10.
采用Gleeble-3500热模拟机,在变形温度为950~1 150℃、应变速率为0.001~10s-1的条件下,研究了粗大柱状晶粒纯镍的热变形行为和加工图.结果表明:热压缩过程中流变应力随应变速率增大而增大,随变形温度降低而增大.流变应力与应变速率、变形温度之间的关系用Zener-Hollomon参数来描述,热变形激活能为312.4kJ/mol.基于动态材料模型(DMM)热加工图及结合合金相显微组织分析,得到纯镍较优的热加工参数:变形温度为1 060~1 120℃,应变速率为0.03~0.20s-1的蛋形区域.  相似文献   

11.
对一种8%Cr冷轧辊用钢在950~1200℃以0.1~10s-1的变形速率进行热压缩变形,通过流变曲线分析、动力学分析及热加工图技术等方法表征其热变形时的力学行为,并对变形后的显微组织进行观察。结果表明:Cr8N钢的加工硬化率和流变应力随着变形温度的升高和应变速率的降低而降低,功率耗散百分数随着Z参数的增大而降低;上述变形条件下Cr8N钢的热变形激活能为542kJ/mol,加工硬化指数为5.25;获得了该钢的热变形方程以及Z参数和峰值应力间的关系。  相似文献   

12.
在变形温度为900~1060℃和应变速率为0.001~10s-1条件下,对Ti62421s合金进行变形量为60%的热压缩变形,以研究Ti62421s合金的热压缩流变应力行为.研究温度与应变速率对Ti62421s热变形流变应力的影响,建立Ti62421s合金热变形流变应力的本构方程和加工图.研究结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳:当在高应变速率(10s-1)下变形时,出现不连续屈服现象:应力峰值随应变速率的增大而增大,随温度的升高而呈减小趋势:合金最佳变形工艺参数为:温度θ=980℃,应变速率(ε)=0.01~0.1s-1.  相似文献   

13.
C级钢因其优越的机械性能而广泛应用于火车车轮、车钩等重要零部件上。该材料零部件通常经热锻成形,因此对该材料在高温下的流动应力进行研究具有重要意义。该文采用Gleeble热力学模拟机对C级钢在温度为1 050~1 250℃、应变速率为0.01~10 s-1条件下的流动应力进行测试,获得C级钢的流动应力数据以及C级钢在不同热变形条件下的峰值及稳态流动应力。实验结果预测了C级钢存在动态再结晶现象,得到了变形温度、应变速率和变形程度对C级钢流变应力的影响规律。基于Sellers-Tegart方程拟合本构参数,包括应力水平参数、应力指数、变形激活能和结构因子,建立了C级钢的本构关系式,可作为C级钢零部件热成形加工工艺选择和参数确定的依据,同时也可作为C级钢零部件锻造工艺数值模拟的基础数据。  相似文献   

14.
The flow curves of an ultra-high nitrogen austenitic steel containing niobium (Nb) and vanadium (V) were obtained by hot compression deformation at temperatures ranging from 1000℃ to 1200℃ and strain rates ranging from 0.001 s-1 to 10 s-1. The mechanical behavior during hot deformation was discussed on the basis of flow curves and hot processing maps. The microstructures were analyzed via scanning electron microscopy and electron backscatter diffraction. The relationship between deformation conditions and grain size after dynamic recrystallization was obtained. The results show that the flow stress and peak strain both increase with decreasing temperature and increasing strain rate. The hot deformation activation energy is approximately 631 kJ/mol, and a hot deformation equation is proposed. (Nb,V)N precipitates with either round, square, or irregular shapes are observed at the grain boundaries and in the matrix after deformation. According to the discussion, the hot working should be processed in the temperature range of 1050℃ to 1150℃ and in the strain rate range of 0.01 to 1 s-1.  相似文献   

15.
在Gleeble-1500热模拟实验机上对原位生成TiC颗粒增强钛基复合材料进行热压缩实验,研究变形温度为700~950℃,应变速率为0.001~1s-1时的热变形行为.研究结果表明:变形温度和应变速率对流变应力有显著影响,流变应力随变形温度的升高而降低,随应变速率的增加而升高.原位生成钛基复合材料在(α+β)相区激活能为357.09kJ/mol,β相区激活能为227.18k.J/mol,采用Zener-Hollomon参数法构建其高温塑性变形的本构关系.根据动态材料模型,建立原位生成钛基复合材料的加工图,并确定热变形的流变失稳区域.  相似文献   

16.
以20CrMnTiH齿轮钢为研究对象,在变形温度850~1 150 °C和应变速率0.01~10 s-1的变形条件下,采用高温压缩热模拟实验研究其塑性变形特性.发现:变形温度850 °C时的流动应力为1 150 °C时的2~3倍,应变速率10 s-1时的应力值为应变速率0.01 s-1时的2~3倍,在高温和低应变速率的条件下发生了连续动态再结晶;从微观组织来看,随变形温度升高,再结晶晶粒沿着初始晶粒的晶界长大并形成新晶粒,变形温度1 050 °C时,多次动态再结晶使得晶粒长大明显.根据采用双曲正弦函数修正的Arrhenius方程,利用线性回归法求出相应的热变形激活能为371.053 kJ/mol.利用加工图确定了相应的热变形过程最佳工艺参数范围,即变形温度为1 020~1 150 °C,应变速率为0.5~2.5 s-1.

  相似文献   

17.
采用热力模拟试验机Gleeble-3500对一种铸态含氮M2高速钢在0.01~1.0s-1及1000~1100℃条件下进行热压缩变形,获得了铸态含氮M2高速钢的流变曲线并分析了变形后的显微组织特性。实验结果表明,铸态含氮M2高速钢热变形过程中的能量消耗效率随应变速率的升高而降低,流变失稳区随应变量的增加向低应变速率和低温区域转变,热变形激活能为588.733kJ/mol,同时得到了其热变形方程和热加工图,获得热加工最佳工艺窗口为0.01~1.0 s-1和1 050~1 100℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号