首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C–4wt%Mn–1.5wt%Ni spheroidal carbide cast irons with varying vanadium (5.0wt%–10.0wt%) and chromium (up to 9.0wt%) contents. The alloys were quenched at 920℃. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides (M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%–10.0wt% for V and 2.5wt%–4.5wt% for Cr, which corresponds to the alloys containing 9vol%–15vol% spheroidal VC carbides, 8vol%–16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9–2.3 times that of the traditional 12wt% V–13wt% Mn spheroidal carbide cast iron.  相似文献   

2.
The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. The effect of scanning speed on the microstructure, microhardness distribution, and wear properties of PTA-remelted specimens was systematically investigated. Microstructural characterization indicated that the PTA remelting treatment could dissolve most graphite nodules and that the crystallized primary austenite dendrites were transformed into cementite, martensite, an interdendritic network of ledeburite eutectic, and certain residual austenite during rapid solidification. The dimensions of the remelted zone and its dendrites increase with decreased scanning speed. The microhardness of the remelted zone varied in the range of 650 HV0.2 to 820 HV0.2, which is approximately 2.3–3.1 times higher than the hardness of the substrate. The wear resistance of NCI was also significantly improved after the PTA remelting treatment.  相似文献   

3.
In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350–400μm thick-ness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) surface alloying of Ti–Fe alloy powder. Microhard-ness tests showed that the surface hardness increased approximately four-fold after the alloying treatment. The microstructure of the MMC coating was mainly composed of residual austenite, acicular martensite, and eutectic ledeburite. Scanning electron microscopy (SEM) and X-ray diffraction analyzes revealed that the in situ TiC particles, which were formed by direct reaction of Ti with carbon originally contained in the GCI, was uniformly distributed at the boundary of residual austenite in the alloying zone. Pin-on-disc high-temperature wear tests were performed on samples both with and without the MMC coating at room temperature and at elevated temperatures (473 K and 623 K), and the wear behavior and mechanism were investigated. The results showed that, after the PTA alloying treatment, the wear resistance of the sam-ples improved significantly. On the basis of our analysis of the composite coatings by optical microscopy, SEM with energy-dispersive X-ray spectroscopy, and microhardness measurements, we attributed this improvement of wear resistance to the transformation of the microstruc-ture and to the presence of TiC particles.  相似文献   

4.
A low-alloy gray cast iron containing hard carbide-forming elements, such as vanadium and chromium, was cast by sand mould casting. Its wear resistance was compared with that of an untreated gray cast iron. Three different loading conditions were tested under a constant speed. It was observed that this alloy could reduce the wear loss of standard gray cast iron by up to 89%, which was much greater than what was achieved in previous reports. Scanning electron microscopy (SEM) was used to determine the predominant wear mechanism of both the alloys. In a mild wear regime, the oxidative mechanism was predominant; however, in a severe wear regime, this mechanism was not predominant and the adhesive mechanism was involved. EDX analysis was conducted to evaluate the quantitative amounts of elements in the tribochemical films formed on the wear tracks.  相似文献   

5.
Three kinds of cast iron coatings were prepared by atmospheric plasma spraying. During the spraying, the mild steel substrate temperature was controlled to be averagely 50, 180, and 240℃, respectively. Abrasive wear tests were conducted on the coatings under a dry friction condition. It is found that the abrasive wear resistance is enhanced with the substrate temperature increasing. SEM observations show that the wear losses of the coatings during the wear tests mainly result from the spalling of the splats. Furthermore, the improved wear resistance of the coatings mainly owes to the formation of oxides and the enhancement in the mechanical properties with the substrate temperature increasing.  相似文献   

6.
The erosive-wear response of five commercial ferrous-based cast alloys used for crushing was examined in this study. The micro-structures of the alloys were modified to elucidate the effect of microstructural features on wear. Erosion tests were conducted using alumi-num oxide particles (90–125 μm) at 70 m/s and a normal impact angle (90°). The worn surfaces were characterized by scanning electron mi-croscopy and 3D non-contact laser profilometry. It is found that (i) a pearlitic structure exhibiting a greater plastic deformation than both bainitic and martensitic structures shows the greatest resistance to erosive wear at normal impact and (ii) the fracture characteristics of car-bide and graphite particles plays an important role in determining the erosion wear behavior of the cast alloy matrices.  相似文献   

7.
A series of austenitic cast iron samples with different compositions were cast and a part of nickel in the samples was replaced by manganese for economic reason. Erosion–corrosion tests were conducted under 2wt% sulfuric acid and 15wt% quartz sand. The results show that the matrix of cast irons remains austenite after a portion of nickel is replaced with manganese.(Fe,Cr)3C is a common phase in the cast irons, and nickel is the main alloying element in high-nickel cast iron; whereas,(Fe,Mn)3C is observed with the increased manganese content in low-nickel cast iron. Under erosion–corrosion tests, the weight-loss rates of the cast irons increase with increasing time. Wear plays a more important role than corrosion in determining the weight loss. It is indicated that the processes of weight loss for the cast irons with high and low nickel contents are different. The erosion resistance of the cast iron containing 7.29wt% nickel and 6.94wt% manganese is equivalent to that of the cast iron containing 13.29wt% nickel.  相似文献   

8.
The chemical composition of cast iron used for casting ball bearing machining disks was varied to optimize the properties such as castability, hardenability, and durability in ball machining. The cast iron characteristics were most strongly dependent on the Ni content and the carbon saturation degree, So. This paper describes the types of test specimens, the working conditions, and the experimental results. The increase of the degree of carbon saturation reduces the tendency to form shrinkholes in the castings. The decrease in the Ni content negatively affects the final hardening treatment. A way to control solidification defects in cast iron, by reducing the Ni content, has been verified on cast disks.  相似文献   

9.
In this study, the processing and mechanical properties of porous metal matrix composites (MMCs) composed of spheroidal cast iron chips (GGG40) and bronze chips (CuSn10) and formed by hot isostatic pressing were investigated. Bronze chips (CuSn10) were used as a matrix component, and spheroidal cast iron (GGG40) chips were used as a reinforcement component. The MMCs were produced with different CuSn10 contents (90wt%, 80wt%, 70wt%, and 60wt%). The hot isostatic pressing process was performed under three different pressures and temperatures. The produced MMCs were characterized using density tests, Brinell hardness tests, and compression tests. In addition, the consolidation mechanism was investigated by X-ray diffraction (XRD) analysis and scanning electron microscopy. The test results were compared with those for bulk CuSn10 and bulk GGG40. Mechanical tests results revealed that the metallic chips can be recycled by using hot pressing and that the mechanical properties of the produced MMCs were similar to those of bulk CuSn10. XRD and microscopy studies showed that no intermetallic compounds formed between the metallic chips. The results showed that the CuSn10 and GGG40 chips were consolidated by mechanical interlocking.  相似文献   

10.
A substrate with Ni/Ti/Si structure was used to grow vertical carbon nanotubes (CNTs) with a graphite fihn over CNT tops by thermal chemical vapor deposition with CH4 gas as carbon source. The carbon nanotubes and the substrate were characterized by a field emission scanning electron microscope for the morphologies, a transmission electron microscope for the microstructures, a Raman spectrograph for the ctystallinity, and an Auger electron spectrometer for the depth distribution of elements. The result shows that when the thickness ratio of Ni layer to Ti layer in substrate is about 1, a graphite film with relatively good quality can be formed on the CNT tops.  相似文献   

11.
A series of austenitic cast iron samples with different compositions were cast and a part of nickel in the samples was replaced by manganese for economic reason. Erosion-corrosion tests were conducted under 2wt% sulfuric acid and 15wt% quartz sand. The results show that the matrix of cast irons remains austenite after a portion of nickel is replaced with manganese. (Fe,Cr)3C is a common phase in the cast irons, and nickel is the main alloying element in high-nickel cast iron; whereas, (Fe,Mn)3C is observed with the increased manganese content in low-nickel cast iron. Under erosion-corrosion tests, the weight-loss rates of the cast irons increase with increasing time. Wear plays a more important role than corrosion in determining the weight loss. It is indicated that the processes of weight loss for the cast irons with high and low nickel contents are different. The erosion resistance of the cast iron containing 7.29wt% nickel and 6.94wt% manganese is equivalent to that of the cast iron containing 13.29wt% nickel.  相似文献   

12.
An analytical expression is presented for the susceptibility of liquid cast iron to solidify according to the Fe-C-X metastable system (also known as the chilling tendency of cast iron, CT). The analysis incorporates the nucleation and growth processes associated with the eutectic transformation. The CT is related to the physicochemical state of the liquid, the eutectic cells in the flake graphite, and the number of nodules in nodular cast iron. In particular, the CT can be related to the critical wall thickness, Scr, or the chill width, Wcr, in wedge shaped castings. Finally, this work serves as a guide for understanding the effect of technical factors such as the melt chemistry, the spheroidizing and inoculation practice, and the holding time and temperature on the resultant CT and chill of the cast iron. Theoretical calculations of Sc, and Wc, compare well with experimental data for flake graphite and nodular cast iron.  相似文献   

13.
To predict the amount of different phases in gray cast iron by a finite difference model (FDM) on the basis of cooling rate (R), the volume fractions of total γ phase, graphite, and cementite were calculated. The results of phase composition were evaluated to find a proper correlation with cooling rate. More trials were carried out to find a good correlation between the hardness and phase composition. New proposed formulas show that the hardness of gray cast iron decreases as the amount of graphite phase increases, and increases as the amount of cementite increases. These formulas are developed to correlate the phase volume fraction to hardness. The results are compared with experimental data and show reasonable agreement.  相似文献   

14.
The microstructure of graphite spherulites (G.S.) in Ce addition ductile cast iron was carried out using transmission electron microscopy (TEM) techniques. The structral characterization of the graphites is as following: there are platelets growing along the periphery as well as fan-like structure formed from platelet aggregates in the diameter section of spherulite, in which most of the platelets are with sizes ranging from several to tens nm in radial; the [001] direction of the platelets would have a tend to parallel to radial of the G. S. and meanwhile, they also a small misorientation deviated from the radial among the platelets each other. It shows that the anisotropy of graphites has been restrained by adding Ce element in cast iron and the structural characterization of the G. S. is consistent with the Double' s model of the conical helixes formed in helical growing and branching.  相似文献   

15.
Vermicular cast iron is used in certain fields because of its special physical properties. However, it is difficult to control the quality from the front of the furnace owing to the narrow range of vermiculizer and other elements that can be added to the iron. A real time method was developed to monitor the vermicular- graphite ratio of the cast iron based on fast measurements of the melt surface tension. The system includes a detector and a control unit that measure the amplitude and frequency of bubbles rising in the melt. This paper describes the methodology for measuring the surface tension of the melt and test results monitoring the vermicular-graphite ratio of the vermicular cast iron from the front of the furnace. The relationship between surface tension and graphite shape has been established. The results show that this system can quickly evaluate the vermicular-graphite ratio of the cast iron.  相似文献   

16.
A micro-modeling method (MM) for the quantitative prediction of the shrinkage cavity formation in SG iron castings is proposed. The mathematical models describing the volume changes during the solidification of spheroidal graphite cast iron are established based on the models of solidification kinetics. The shrinkage cavity formation of T-shaped SG iron castings is calculated with MM method. The calculated results are compared with the experimental results. It is shown that the predicted size, shape and distribution of shrinkage cavity by MM method are in good agreement with the measured results.  相似文献   

17.
The solidification characteristics and microstructure evolution in grey cast iron were investigated through Jmat-Pro simulations and quenching performed during directional solidification. The phase transition sequence of grey cast iron was determined as L → L + γ → L +γ + G → γ + G → P (α + Fe3C) + α + G. The graphite can be formed in three ways:directly nucleated from liquid through the eutectic reaction (L → γ + G), independently precipitated from the oversaturated γ phase (γ → γ + G), and produced via the eutectoid transformation (γ → G + α). The area fraction and length of graphite as well as the primary dendrite spacing decrease with increasing cooling rate. Type-A graphite is formed at a low cooling rate, whereas a high cooling rate results in the precipitation of type-D graphite. After analyzing the graphite precipitation in the as-cast and transition regions separately solidified with and without inoculation, we concluded that, induced by the inoculant addition, the location of graphite precipitation changes from mainly the γ interdendritic region to the entire γ matrix. It suggests that inoculation mainly acts on graphite precipitation in the γ matrix, not in the liquid or at the solid-liquid front.  相似文献   

18.
b-NiAlDy cast alloys containing varying aluminum content were prepared by arcmelting. The microstructures and cyclic oxidation behavior of the alloys at 1200 1C were investigated. Grain refinement was achieved by increasing aluminum content in the alloy, which is beneficial to selective oxidation. The Ni–55Al–0.1Dy alloy showed excellent cyclic oxidation resistance due to the formation of a continuous, dense and slow-growing oxide scale. In contrast to this, severe internal oxidation as well as large void formation at the scale/alloy interface occurred in the Ni–45Al–0.1Dy alloy. The aluminum content dependence of the reactive element effects in b- NiAlDy was established that Dy doping strengthened the scale/alloy interface by pegging mechanism in high-aluminum alloys but accelerated internal oxidation in low-aluminum alloys during high-temperature exposure.  相似文献   

19.
A wear-resistant (Cr, Fe)7C3/γ-Fe in situ ceramal composite coating was fabricated on the substrate of 0.45wt%C carbon steel by a plasma-transferred arc cladding process using the Fe-Cr-C elemental powder blends. The microstructure, microhardness, and dry-sliding wear resistance of the coating were evaluated. The results indicate that the microstructure of the coating, which was composed of (Cr, Fe)7C3 primary phase uniformly distributed in the γ-Fe, and the (Cr, Fe)7C3 eutectic matrix was metallurgically bonded to the 0.45wt%C carbon steel substrate. From substrate to coating, the microstructure of the coating exhibited an evident epitaxial growth character. The coating, indehiscent and tack-free, had high hardness and appropriate gradient. It had excellent wear resistance under the dry sliding wear test condition.  相似文献   

20.
The dry impact wear behavior of bainite ductile cast iron was evaluated under three different impact loads for 30000 cycles. The strain-hardening effects beneath the contact surfaces were analyzed according to the surfaces’ micro-hardness profiles. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to observe the worn surfaces. The results indicated that the material with the highest hardness was the one continuously cooled at 20°C, which exhibited the lowest wear rate under each set of test conditions. The hardness of the worn surface and the thickness of the hardened layer increased with the increases in impact load and in the number of test cycles. The better wear performance of the sample cooled at 20°C is attributed to its finer microstructure and superior mechanical properties. All the samples underwent the transformation induced plasticity (TRIP) phenomenon after impact wear, as revealed by the fact that small amounts of retained austenite were detected by XRD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号