首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the microstructure of an Al 7050-T7451 substrate on the anodic oxide formation in sulfuric acid was studied in this article. The microstructure of the substrate was assessed by optical microscope (OM) and transmission electron microscope (TEM). The surface and cross-section morphologies of the oxide films were examined by scanning electron microscope (SEM). The chemical composition of intermetallic particles in the alloys and films was investigated using energy dispersive spectroscope (EDS). The roles of intermetallic phases and grain or subgrain boundaries on the oxide film formation were researched using the potentiodynamic and potentiostatic polarization technique in sulfuric acid solution. The results show that the transition of coarse intermetallic particles or grain (subgrain) boundaries at the surface of Al alloys can be characterized by potentiodynamic polarization curves. The surface and cross-section micrographs of the anodic layer seem to preserve the microstructure of the substrate. Large cavities in the anodic films are caused by the preferential dissolution of coarse AItCuMg particles and the entrance of Cu-rich remnants into the electrolyte during anodizing. The Al7Cu2Fe particles tend to be occluded in the oxide layer or lose from the oxide surface because of peripheral trenching. Small pores in the films are induced by the dissolution of precipitates in grain or subgrain boundaries. The film surface of recrystallized grain bodies is smooth and homogeneous.  相似文献   

2.
The microstructure and optical properties of Ag-5In-5Te 47Sb 33 phase change films with high reflection in the thermal annealing process were systematically reported. The as_deposited film is amorphous and its crystalline temperature is 160℃. The annealed films are crystalline. The crystalline phases are AgInTe-2, AgSbTe-2 and Sb when annealed at low temperature. When annealed at 220℃, the AgInTe-2 phase disappears and the amount of AgSbTe-2 is the largest. The research of electronic transmission microscopy shows that the morphology of AgSbTe 2 is sphere and that of Sb is bludgeon. The reflection of the annealed films is higher and reaches its peak value at 220℃.  相似文献   

3.
A simple process for the deposition of CulnSe2 thin films was described. The CulnSe2 compound was prepared by selenization of Cu-In alloy precursors, which were electrodeposited at a constant current. The selenized precursors were compacted and then annealed. The films were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results indicate that single-phase CulnSe2 is formed at 250℃ and its crystallinity of this phase is improved as the annealing temperature rises. The losses of In occur in selenization process. The dense CulnSe2 film with comparatively smooth surface can be obtained by compaction under the pressure of 200 MPa.  相似文献   

4.
An equiatomic FeSiBAlNi amorphous high-entropy alloy (HEA) was fabricated by mechanical alloying (MA). A fully amorphous phase was obtained in the FeSiBAlNi HEA after 240 h of MA. The bulk FeSiBAlNi samples were sintered by spark plasma sintering (SPS) at 520 and 1080℃ under a pressure of 80 MPa. The sample sintered at 520℃ exhibited an amorphous composite structure comprising solid-solution phases (body-centered cubic (bcc) and face-centered cubic (fcc) phases). When the as-milled amorphous HEA was consolidated at 1080℃, another fcc phase appeared and the amorphous phase disappeared. The sample sintered by SPS at 1080℃ exhibited a slightly higher melting temperature compared with those of the as-milled alloy and the bulk sample sintered at 520℃. The corrosion behaviors of the as-sintered samples were investigated by potentiodynamic polarization measurements and immersion tests in seawater solution. The results showed that the HEA obtained by SPS at 1080℃ exhibited better corrosion resistance than that obtained by SPS at 520℃.  相似文献   

5.
Pure TiO2 thin films were deposited onto quartz substrates using a ceramic TiO2 target at an elevated substrate temperature of 573 K by RF magnetron sputtering, and an analysis of structural, optical and photoluminescence characteristics of the films upon phase transformation is reported in this paper. Structural investigations using X-ray diffraction revealed that the as-deposited film was amorphous in nature. Thermal annealing for 2 h at 873 K in air resulted in the formation of anatase phase, and a phase transformation to rutile was observed at 1073 K.An increase in grain size and an improvement in crystallinity were also observed on annealing. Rod- like rutile crystallites were observed in the SEM images of the film annealed at 1273 K. As-deposited films and films annealed up to 1073 K were highly transparent in the visible region with a transparency 480%. Optical band gap of the films decreased upon thermal annealing which is attributed to phase transformation from amorphous to anatase and then to rutile. Optical parameters such as refractive index, optical conductivity and optical dielectric constant increased with increase in annealing temperature. Since rutile is the optically active phase, the superior refractive index of the film annealed at 1073 K along with its high transparency in visible region suggests the application of this film in antireflective coatings. Photoluminescence emission of maximum intensity was observed for the film annealed at 873 K, which exhibits anatase phase. Intense blue emission observed in this film makes it suitable for use in optoelectronic display devices.  相似文献   

6.
The morphology and growth kinetics of discontinuous precipitation (DP) in a Cu–20Ni–20Mn alloy were investigated in the temperature range of 523–673 K by optical microscopy, scanning electron microscopy, and transmission electron microscopy. A lamellar mixed structure consisting of alternating lamellae of a matrix and NiMn phase was observed in DP colonies. The volume fraction of regions formed by a DP reaction was determined by quantitative metallographic measurements. The kinetics of DP was evaluated on the basis of the Johnson–Mehl–Avrami–Kolmogorov equation, which resulted in a time exponent of approximately 1.5. We confirmed that the nucleation of the discontinuous precipitate was confined to grain edges or boundaries at an early stage of the reaction. The activation energy of DP process was determined to be approximately (72.7 ±7.2) kJ/mol based on the Arrhenius equation; this result suggests that DP is controlled by grain boundary diffusion. The hardness values exhibited good correlation with the volume fraction of DP; this correlation was attributed to the presence of the ordered NiMn phase.  相似文献   

7.
《矿物冶金与材料学报》2020,27(8):1100-1114
The effect of microstructure and passive film on the corrosion resistance of 2507 super duplex stainless steel (SDSS) in simulated marine environment was investigated by electrochemical measurements, periodic wet–dry cyclic corrosion test, scanning Kelvin probe force microscopy, atomic force microscopy, and X-ray photoelectron spectrometry. The results show that the occupation ratio of γ phase increases with the decrease in cooling rate, whereas the content of α phase reduces gradually. In addition, the σ precipitated phase only emerges in the annealed steel. The pitting sensitivity and corrosion rate of 2507 SDSS reduce first and then increase as the cooling rate decreases. The σ precipitated phase drastically reduces the protective ability of the passive film and facilitates micro-galvanic corrosion of the annealed steel. For various microstructures, the pits are preferentially distributed within the σ and γ phases. The corrosion resistance of 2507 SDSS prepared by different cooling methods is closely related to the microstructure and structure (stability and homogeneity) of the passive film. Normalized steel shows an optimal corrosion resistance, followed by the quenched and annealed steels.  相似文献   

8.
The effect of microstructure and passive film on the corrosion resistance of 2507 super duplex stainless steel(SDSS) in simulated marine environment was investigated by electrochemical measurements, periodic wet–dry cyclic corrosion test, scanning Kelvin probe force microscopy, atomic force microscopy, and X-ray photoelectron spectrometry. The results show that the occupation ratio of γ phase increases with the decrease in cooling rate, whereas the content of α phase reduces gradually. In addition, the σ precipitated phase only emerges in the annealed steel. The pitting sensitivity and corrosion rate of 2507 SDSS reduce first and then increase as the cooling rate decreases. The σ precipitated phase drastically reduces the protective ability of the passive film and facilitates micro-galvanic corrosion of the annealed steel. For various microstructures, the pits are preferentially distributed within the σ and γ phases. The corrosion resistance of 2507 SDSS prepared by different cooling methods is closely related to the microstructure and structure(stability and homogeneity) of the passive film. Normalized steel shows an optimal corrosion resistance, followed by the quenched and annealed steels.  相似文献   

9.
Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.  相似文献   

10.
Effects of Ag addition on the microstructures, aging characteristics, tensile properties, electrochemical properties, and intergranular corrosion (IGC) properties of Al-1.1Mg-0.8Si-0.9Cu-0.35Mn-0.02Ti alloy were investigated using scanning electronic microscopy and transmission electronic microscopy. The aging process of Al-Mg-Si-Cu alloys was accelerated by the addition of Ag. The strength of peak-aged Al-Mg-Si-Cu alloys was enhanced by Ag addition because of the high density of β"- and L-phase age-hardening precipitates. The corrosion performance of the Al-Mg-Si-Cu alloy is closely related to the aging conditions and is independent of the Ag content. The IGC susceptibility is serious in the peak-aged alloy because of the continuous distribution of Cu-rich Q-phase precipitates along grain boundaries. Ag addition reduces the size of the grain-boundary-precipitate Q phase and the width of the precipitate-free zone and thus results in decreased IGC susceptibility of Al-Mg-Si-Cu alloys.  相似文献   

11.
Amorphous metals are totally different from crystalline metals in regard to atom arrangement. Amorphous metals do not have grain boundaries and weak spots that crystalline materials contain, making them more resistant to wear and corrosion. In this study, amorphous Fe-W alloy films were first prepared by an electroplating method and were then made hydrophobic by modification with a water repellent (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. Hierarchical micro-nano structures can be obtained by slightly oxidizing the as-deposited alloy, accompanied by phase transformation from amorphous to crystalline during heat treatment. The micro-nano structures can trap air to form an extremely thin cushion of air between the water and the film, which is critical to producing hydrophobicity in the film. Results show that the average values of capacitance, roughness factor, and impedance for specific surface areas of a 600℃ heat-treated sample are greater than those of a sample treated at 500℃. Importantly, the coating can be fabricated on various metal substrates to act as a corrosion retardant.  相似文献   

12.
The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25℃ and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.  相似文献   

13.
The influence of silane coupling agent on the film forming of galvanized steel treated with cerium salt was studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), and the corrosion resistance of conversion films was analyzed by electro interstitial scanning (EIS). The results show that silane coupling agent KH-570 has significant influence on the compactness and homogeneity of cerium conversion films, and the process of film forming is promoted by increasing the content of tervalent and tetravalent cerium oxide. The impedance value of the cerium conversion film, especially modified with KH-570, is greater than that of the base metal, which reveals that it is necessary to add silane coupling agent to the film-forming solution in order to improve the corrosion resistance of the conversion film.  相似文献   

14.
The effects of microstructure change on the corrosion behaviours of Ni55Nb20Ti10Zr8Co7 bulk glass-forming alloy were investigated in 1 mol/L HCl and 0.5 mol/L H2SO4 solutions. Different microstructures of the Ni-based alloy were achieved by annealing the bulk glassy rod prepared by copper mould casting. The microstructure, grain size, grain distribution, and phase composition were characterized. Electrochemical behaviours of the Ni-based alloy were revealed by static immersion and anodic potentiodynamic polarization tests. It is indicated that the corrosion behaviours of the Ni-based bulk glass-forming alloy are related to its microstructures, while the fully crystallized alloy exhibits a relatively lower corrosion resistance than those of the amorphous states.  相似文献   

15.
The microstructure evolution and electrolysis behavior of(Cu_(52)Ni_(30)Fe_(18))–x Ni Fe_2O_4(x=40wt%,50wt%,60wt%,and 70wt%)composite inert anodes for aluminum electrowinning were studied.Ni Fe_2O_4 was synthesized by solid-state reaction at 950°C.The dense anode blocks were prepared by ball-milling followed by sintering under a N_2 atmosphere.The phase evolution of the anodes after sintering was determined by scanning electron microscopy and energy-dispersive X-ray spectroscopy.The results indicate that a substitution reaction between Fe in the alloy phase and Ni in the oxide phase occurs during the sintering process.The samples were also examined as inert anodes for aluminum electrowinning in the low-temperature KF–NaF–AlF_3 molten electrolyte for 24 h.The cell voltage during electrolysis and the corrosion scale on the anodes were analyzed.The results confirm that the scale has a self-repairing function because of the synergistic reaction between the alloy phase with Fe added and the oxide phase.The estimated wear rate of the(Cu_(52)Ni_(30)Fe_(18))–50Ni Fe_2O_4 composite anode is 2.02 cm·a~(-1).  相似文献   

16.
Superlattice phase transformation, occurred in the solute enriched region caused by diffusion induced grain boundary migration (DIGM), was found in two kinds of diffusion couples which consist of: (1) low carbon high strength steel with hot dipped zinc coating, and (2) commercial pure iron with galvanized zinc coating after isothermally diffusion annealed at different temperatures (500, 560 and 580℃) with various durations. The product of the transformation is an ordered phase with Li2 superlattice structure which was identified through the analysis by SEM,TEM and AEM. The ordered phase resulted from transformation occurred in the alloyed areas generated by DIGM and DIR The zinc content in this phase is variable, it approaches the stoichiometric composition Fe3Zn as the diffusion time is sufficiently prolonged. The mechanism of the transformation in connection with the process of DIGM and DIR was discussed. DIGM DIR and DIP (diffusion induced phase transformation) are three interrelated processed originated from grain boundary diffusion.  相似文献   

17.
Heating-cooling combined mold (HCCM) horizontal continuous casting technology developed by our research group was used to produce high axial columnar-grained CuNi10FeMn1 alloy tubes with different Fe contents. The effects of Fe content (1.08wt%–2.01wt%) on the microstructure, segregation, and flushing corrosion resistance in simulated flowing seawater as well as the mechanical properties of the alloy tubes were investigated. The results show that when the Fe content is increased from 1.08wt% to 2.01wt%, the segregation degree of Ni and Fe elements increases, and the segregation coefficient of Ni and Fe elements falls from 0.92 to 0.70 and from 0.92 to 0.63, respectively. With increasing Fe content, the corrosion rate of the alloy decreases initially and then increases. When the Fe content is 1.83wt%, the corrosion rate approaches the minimum and dense, less-defect corrosion films, which contain rich Ni and Fe elements, form on the surface of the alloy; these films effectively protect the α-matrix and reduce the corrosion rate. When the Fe content is increased from 1.08wt% to 2.01wt%, the tensile strength of the alloy tube increases from 204 MPa to 236 MPa, while the elongation to failure changes slightly about 46%, indicating the excellent workability of the CuNi10FeMn1 alloy tubes.  相似文献   

18.
Independent microstructures made of Ni metal were fabricated by five sequential processes:porous anodic oxide film for-mation, pore sealing, laser irradiation, Ni electroplating, and removal of the aluminum substrate and anodic oxide films. Aluminum plates and rods were anodized in an oxalic acid solution to form porous type anodic oxide films, and then immersed in boiling dis-tilled water for pore sealing. The anodized and pore-sealed specimens were irradiated with a pulsed neodymium-doped yttrium alu-minum garnet (Nd-YAG) laser beam in a Ni plating solution to remove anodic oxide film locally by rotating and moving up/down with an XYZθ-stage. Nickel was deposited at the area where film had been removed by cathodic polarization in the solution before removing the aluminum substrate and anodic oxide films in NaOH solutions. Cylindrical or plain network structures were fabricated successfully.  相似文献   

19.
Large-area single-or multilayer graphene of high quality is synthesized on Ni films by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) at a relatively low temperature (650℃).In the deposition process,a trace amount of CH4 gas (2-8 sccm (sccm denotes standard cubic centimeter per minute at STP)) is introduced into the PECVD chamber and only a short deposition time (30-60 s) is used.Single-or multilayer graphene is obtained because carbon atoms from the discharging CH4 diffuse into the Ni film and then segregate out at its surface.The layer number of the obtained graphene increases when the deposition time or CH4 gas flow rate is increased.This investigation shows that PECVD is a simple,low-cost,and effective technique to synthesize large-area single-or multilayer graphene,which has potential for application as electronic devices.  相似文献   

20.
Rapidly solidified Al-10Sr alloy ribbons were prepared using a single roller melt spinning technique. The annealing process of the rapidly solidified Al-10Sr alloy has been carried out using differential scanning calorimetry (DSC). The microstructure of as-annealed Al-10Sr alloy has been characterized by transmission electron microscopy (TEM). The equilibrium AUSr phase is dominant in the as-annealed alloy. Besides the Al4Sr phase, an AlSr phase is also found in the alloy isothermally annealed at 873 K for 90 min. Furthermore, a modulated nanostructure was observed in the alloy isothermally annealed at 873 K for 90 min. With further prolonged annealing time, however, the AlSr phase disappears in the as-annealed alloy. The dependence of particle size and growth rate on annealing time as well as the modulated structure shows that the occurrence of the AlSr phase may be due to the spinodal decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号