首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

7.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

8.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
Dissolution of pyroxene in garnet at ultrahigh pressures produces supersilicie garnet with the coupled substitutions of Si^Ⅵ M^Ⅵ= A^Ⅵ A^Ⅵ and Si^Ⅵ Na^Ⅷ=A^Ⅵ M^Ⅷ,which are enhanced by rising pressure. The supersilicic garnet and exsolution of pyroxene, rutile, apatite and quartz in garnet during decompression were found in natural rocks,pointing to the importance in studying mantle-derived rocks and ultrahigh pressure metamorphism related to plate deep subduction. Ti, P, K and H2O enters garnet via the substitutions of Ti = Si, P^Ⅵ Na^Ⅷ = Si^Ⅵ CaⅧ, Si^Ⅵ K^Ⅷ = AI^Ⅵ M^Ⅷ, and [(OH)4]^4- = [SiO4]^4- or [4H]^4 = Si^4 respectively. The possible entering of Eskola pyroxene component M0.5AlSi2O6 in clinopyroxene, together with the common pyroxene component M2Si2O6, into garnet can lead to the presence of the substitution of Si^Ⅵ 0.5□^Ⅷ= A^Ⅵ 0.5M^Ⅷ in garnet structure, which plays a key role in the exsolution of rntile, apatite and quartz in garnet. Two new breakdown reactions are thus proposed on the basis of the new coupled substitution, which can be regarded as a theoretical model for the exsolntion of the 3 minerals in garnet. The real exsolution may be a combination of several breakdown reactions.  相似文献   

12.
测定了动性球菌产生胞外脂肪酶的酶活力,对动性球菌产生胞外脂肪酶的条件进行了研究.结果表明,当碳源为葡萄糖,氮源为蛋白胨,初始pH值为6.0时脂肪酶产率最高;K2HPO4,KH2PO4,CaCl2,ZnSO4和NaCl对脂肪酶产率有促进作用;CuSO4和MgSO4对脂肪酶产率有一定影响;FeCl3,BaCl2,CoSO4和MnSO4对脂肪酶产率影响较大;非离子表面活性剂吐温和聚乙烯醇均能促进脂肪酶的生成,且吐温比聚乙烯醇效果更好.  相似文献   

13.
Effects of La3+ and Gd3+ on Ca2+ influx were investigated in rat hepatoma H-35 cells by measuring the initial rate of45Ca2+ uptake. It was found that the maximum initial rate of Ca2+ uptake was increased six-to ten-fold at low concentrations of La3+ and Gd3+. Kinetic analyses by measuring the initial rate of Ca2+ influx at different external Ca2+ concentrations indicated the existence of two intracellular exchangeable components in the basal Ca2+ system, with low and high affinities for Ca2+, and only one class of Ca2+ binding sites was observed in the La3+-or Gd3+-treated cells. For high affinity, La3+ and Gd3+ increased both kinetic parametersK m andV max of basai Ca2+ influx. La3+ and Gd3+ compete directly with Ca2+ for Ca2+ binding site for low affinity. The kinetics is competitive.  相似文献   

14.
采用高温固相法合成了红色长余辉材料Y2O2S:Eu3+,Zn2+,Ti4+,实现了余辉发光中心和缺陷中心之间的能量传递。通过XRD、荧光发射和激发光谱、余辉发射光谱与衰减曲线、色坐标和热释光谱测试手段对Y2O2S:Eu3+,Zn2+、Y2O2S:Eu3+,Ti4+、Y2O2S:Eu3+,Zn2+,Ti4+和Y2O2S:Eu3+,Mg2+,Ti4+进行了结构与性能的表征,发现其荧光发射与余辉发射基本一致,红色余辉发光主峰位于625 nm附近,来源于Eu3+的5D0→7F2跃迁发射。相比而言,Y2O2S:Eu3+,Zn2+,Ti4+余辉发光性能最好,可持续1.5 h左右。  相似文献   

15.
The effects of monovalent (Na^ , K^ ) and divalent (Mg^2 , Ca^2 , Mn^2 ) ions on the interaction between DNA and histone are studied using the molecular combing technique. λ-DNA molecules and DNA-histone complexes incubated with metal cations (Na^ , K^ , Mg^2 , Ca^2 , Mn^2 ) are stretched on hydrophobic surfaces, and directly observed by fluorescence microscopy. The results indicate that when these cations are added into the DNA solution, the fluorescence intensities of the stained DNA are reduced differently. The monovalent cations (Na^ , K^ ) inhibit binding of histone to DNA. The divalent cations (Mg^2 , Ca^2 , Mn^2 ) enhance significantly the binding of histone to DNA and the binding of the DNA-histone complex to the hydrophobic surface. Mn^2 also induces condensation and aggregation of the DNA- histone complex.  相似文献   

16.
广东韩江流域化学风化作用及大气CO2消耗的分析   总被引:1,自引:0,他引:1  
岩石的风化作用与碳循环有着极为密切的联系。韩江流域处于湿热地区,是广东省除珠江流域以外的第二大流域。对韩江水系进行了系统采样、测试分析显示,河水水化学组成以HCO3-和Ca2+为主,其次是SO24-和Na+。Gibbs图分析表明,韩江流域河水离子成分主要来源于岩石的风化释放;相关分析和因子分析则表明,蒸发盐岩、碳酸盐岩、硅酸盐岩风化过程对河水离子的贡献率分别为33.4%、27.7%和为10.5%。大气中的CO2通过参与岩石的化学风化过程对河水中溶解质的贡献率为20.2%。韩江流域河水中HCO3-有50.2%来自大气CO2,由此估算韩江流域岩石化学风化对大气CO2的消耗量为73.33×108mol/a。在主要支流中,由大到小的顺序是汀江、石窟河、宁江、五华河和梅潭河,分别为28.08×108,13.26×108,10.22×108,5.17×108和2.90×108mol/a。韩江流域岩石化学风化对大气CO2的消耗率为252.2×103mol/(km2·a)。各主要支流中岩石化学风化对大气CO2消耗率最高的是宁江,为718.55×103mol/(km2·a),其次是石窟河360.14×103mol/(km2·a),再依次递减的是五华河282.04×103 mol/(km2·a),汀江237.73×103 mol/(km2·a),梅潭河181.18×103mol/(km2·a);韩江流域的平均化学风化率为54.11 t/(km2·a),各主要支流由高到低依次为,宁江最高140.5 t/(km2·a),石窟河71.2 t/(km2·a),汀江52.39 t/(km2·a),五华河51.02 t/(km2·a),梅潭河38.04 t/(km2·a)。  相似文献   

17.
Phenotypic analysis of the medullary-type CD4 CD8+ (CD8SP) thymocytes has revealed phenotypic heterogeneity within this cell population. The phenotype of mature peripheral CDS+T cells is TCRαβ+CD3+Qa-2+HSA 3G116C10, whereas in the medullary-type CD8SP thymocytes, 20% are Qa-2+; 33%, HAS; 30%, 3G11; and 70% are 6C10. The disparate expression patterns of these four cell surface markers suggest that medullary-type CD8SP thymocytes may undergo phenotypic maturation process. According to the distribution of these four cell surface markers, six subgroups of CD8SP thymocytes have been identified. The precursor-progeny relationship along with developmental pathway is postulated as follows: 6C10+HSA+3G11 Qa-2→ 6C10+HSA+ 3G11+Qa-2 → 6C10 HSA+3G11+Qa-2 → 6C10HSA3G11+Qa-2 → 6C10HSA3G11 Qa-2 → 6C10HA S 3G11 Qa-2+, the cells in the last subgroup exit the thymus and home into periphery.  相似文献   

18.
The effects of lanthanides on the hydrolysis of phosphatidylinositol in human erythrocyte membranes were studied. 3H-inositol labeling chromatography and HPLC were used to determine inositol 1, 4, 5-triphosphate and diacylglycerol separately, the hydrolytic products of phosphatidylinositol due to the reaction of lanthanide ions with human erythrocyte membranes. The unhydrolyzed phosphatidylinositol in membranes was also determined. The results indicate that the hydrolysis of phosphatidylinositol can be promoted by lanthanides (La3+, Ce3+, Y3+, Tb3+) and the effects of La3+ and Ce3+ are stronger than those of Y3+ and Tb3+.  相似文献   

19.
利用相对论平均场理论,考虑重子八重态{n,p,Λ,Σ-0+-0}, 研究了自相互作用对超子星转变密度的影响。研究发现:考虑到自相互作用的贡献,超子星的转变密度增大;超子Λ,Ξ--和Ξ0出现时的重子数密度降低,而Σ0和Σ+超子出现时的重子数密度增加; 对于超子星转变密度,超子数密度贡献最大的是Λ和Ξ-超子,占总超子数密度的80%以上;自相互作用的存在使得超子Ξ-和Ξ0的贡献增大,而使Λ,Σ-0和Σ+超子的贡献减小。  相似文献   

20.
设(Z2)k作用作用于光滑闭流形Mn, 其不动点集具有常余维数r, Jrn,k是具有上述性质的未定向n维上协边类[Mn]构成的 集合.Jr*,k为未定向上协边环MO*的理想. 通过构造MO*的一组生成元证明由所有维数大于2k+2l的上协边类及分解式中每个因子的维数都小于2k的2k+2l维可分解上协边类构成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号