共查询到17条相似文献,搜索用时 70 毫秒
1.
设B是一个超有限因子,T(N)是B中的正则套代数.给出了T(N)中的Lie理想的结构.证明了T(N)的一个σ-弱闭子空间L是T(N)的Lie理想当且仅当存在T(N)的一个σ-弱闭的结合理想J和T(N)的对角部分的中心的子空间E,使得J0LJ+E,其中J0为J中的迹为零的元的集合. 相似文献
2.
给出了超有限因子到其中的套代数的对角上的忠实正常的条件期望的一个刻画,证明了超有限因子中的套代数的中心恰好是纯量构成的. 举例说明了超有限因子中套代数的理想结构与Hilbert空间上的套代数的理想结构之间的本质不同. 相似文献
3.
利用对幂等元的作用确定了非交换环上三角代数的Jordan同构的结构;由此结构判断该Jordan同构或者是同构,或者是反同构. 相似文献
4.
温启军 《吉林大学学报(理学版)》2011,49(6):1014-1018
研究Jordan李代数的次理想. 结果表明: Jordan李代数的完全次理想是理想, 可解次理想一定包含可解根基; 幂零的Jordan李代数的任何子代数都是次理想, 并得到了次理想变为理想的一些必要条件. 相似文献
5.
《华东师范大学学报(自然科学版)》2016,(1)
Zhao和Zhu证明了如下结果:复数域上的任意上三角矩阵代数中的每一矩阵都是Jordan全可导点.本文将证明:特征不为2的无限域上的任意上三角矩阵代数中的每一矩阵都是Jordan全可导点. 相似文献
6.
用元素比较法研究了三角矩阵代数上的广义 Jordan 导子,证明了三角矩阵代数上的广义Jordan 导子都是一个广义导子. 相似文献
7.
设T是三角代数,B是有理数域Q上的代数,r是一个有理数,本文的主要目标是研究从T到B上的Jordan三元映射的可加性。利用三角代数的矩阵结构,证明了如果ф是从T到B上的双射,满足任给a,b,c∈A都有ф(r(abc+cba))=r(ф(a)ф(b)ф(c)+ф(c)ф(b)ф(a)),则是可加的。 相似文献
8.
设A是Jordan代数,如果线性映射d:A→A满足任给a,b∈A都有d(a。b)=d(a)。b+a。d(b),则称d是Jordan导子。本文给出了自伴算子构成的Jordan代数和Spin因子上的Jordan导子的具体表达形式,并且证明了Spin因子上的局部Jordan导子和2-局部Jordan导子是Jordan导子。 相似文献
9.
刘莉君 《陕西理工学院学报(自然科学版)》2010,26(2):68-71
设(u)=Tri(A,M,B)是三角代数,引入三角代数(u)上的Jordan导子和内导子的概念,利用算子论的方法证明三角代数(u)上的Jordan导子是三角代数彩上的内导子.从而推广了三角代数(u)上的Jordan导子的定义. 相似文献
10.
杜奕秋 《吉林大学学报(理学版)》2017,55(6):1411-1415
给出套代数上满Jordan同态为同态或反同态的一个充分条件,并证明有限维套代数之间的满Jordan同态必为同态或反同态. 相似文献
11.
设U=Tri(A, M, B )是特征不为 2 的三角代数, Q={u∈U:u2=0}且φ:U→U是一个映射(无可加或线性假设)。 证明了如果对任意a,b∈U且[a,b]∈Q, 有φ(ab)=φ(a)b+aφ(b), 则φ是一个可加导子, 其中[a,b]=ab-ba为Lie积, ab=ab+ba为Jordan积。 相似文献
12.
设U是一个 2-无挠的三角代数,D ={dn}n∈N是U上一个Lie积为平方零元的非线性Jordan高阶可导映射。证明了三角代数U上的每一个Lie积为平方零元的非线性Jordan高阶可导映射都是高阶导子。作为结论的应用,得到套代数或 2-无挠的上三角分块矩阵代数上的每一个Lie积为平方零元的非线性Jordan高阶可导映射都是高阶导子。 相似文献
13.
探讨交换半环上的上三角矩阵代数的Jordan导子,并证明了交换半环R上的上三角矩阵代数Tn(R)到Tn(R)-双模M的每个Jordan导子都可分解成一个导子和一个反导子之和. 相似文献
14.
15.
设A和B是无限维Banach空间X上的标准算子代数且ψ:A →B是一个保单位的线性双射。证明了如果对任意的A,B∈A且AB=0,有ψ(A°B)=ψ(A)°ψ(B)成立,则对任意A,B∈A,要么ψ(AB)=ψ(A)ψ(B),要么ψ( AB)=ψ( B)ψ( A)。 相似文献
16.
设A,B是含单位元的Banach代数, M是一个Banach A,B-双模。 T=(A MB) 按照通常矩阵加法和乘法,范数定义为‖(a mb)‖=‖a‖A+‖m‖M+‖b‖B,构成三角Banach代数。通过作用(f hg)(a mb)=f(a)+h(m)+g(b), T的对偶空间 T*为(A* M*B*)。 在T*上定义模作用 (a mb)·(f hg)=(a·f+m·h b·hb·g), (f hg)·(a mb)=(f·a h·ah·m+g·b), 使其成为一个对偶Banach T-双模。从T到T*的映射称为对偶模映射。 本文对T上对偶模Jordan导子和对偶模广义导子进行讨论, 给出了T上对偶模Jordan导子是对偶模导子的一个充分条件并且对T上对偶模广义导子进行了刻画。 相似文献
17.
证明了上三角矩阵代数上的Jordan triple可乘映射是可加的,并给出具体刻画,同时给出一个例子说明了上三角矩阵代数上的Jordan半可乘映射不一定可加. 相似文献