首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
关于自然数组成的级数sum from k=1 to ∞ (k)和自然数平方组成的级数sum from k=1 to ∞ (k~2)的前n项求和公式: S_1(n)=sum from k=1 to n (k)=n(n+1)/2 S_2(n)=sum from k=1 to n (k~2)=1/6n(n+1)(2n+1) (2)我们大家非常熟悉,并且在一些文献中分别给出不同的证明。本文利用公式(1),(2)介绍几种自然数立方组成的级数sum from k=1 to ∞ (k~3)的前n项和公式:  相似文献   

2.
本文给出形如p(n)=sum from k=1 to n(k)的幂级数的一种简易求和法,其中f(k)=sum from i=0 to ma_1k~i且a_m≠0。  相似文献   

3.
§1.设k次对称函数fk(x)=z sum from v=1 to ∝(a_(vk)_1)~(z~(vk_1))=z sum from v=z to ∝ (a_n~(k)z~(vk 1)在单位圆|z|<1中正则单叶,这类函数的全体称为S_k,设σ_n~(k)=z sum from v=1 to ∝n (a_(vk)_1~(z~(vk 1))。 舍苟证明一切σ_n~(1)(z)在圆|z|<1/4中单叶,且不能易以更大的数,伊列夫证明当  相似文献   

4.
5.
設L可积函数f(x)的富理埃級数是 (x)~α_0/2+sum from n=1 to ∞(α_n cos nx+b_n sin nx)=sum from n=0 to ∞(A_n(x))其导級数是sum from n=1 to ∞(n(b_n cos nx-α_n sin nx))=sum from n=1 to ∞(nB_n(x))。又設s_n=sum from k=0 to n(u_k),当  相似文献   

6.
对于sum from n=1 to ∞ 1/n~(2m)(m∈Z~+),当n-1时,有sum from n=1 to ∞ 1/n~2=π~2/6,并且对它有着许多种不同的证法.通过博里叶(Fourier)级数以及逐项积分,得到关于sum from n=1 to ∞ 1/n~(2m)(m∈Z~+)的和的系数的一个递推关系式,并给出当m=1,2,3,4,5时的结果。  相似文献   

7.
(一)引言关于自然数连续n项k次幂的求和公式,有不少同志在研究,并得到了很多成果。如余炯沛同志在文[1]中,证明了sum from m=1 to n (m~k)的和是n的k+1次多项式;赵建林等同志在文[2]中,找到了求和的统一关系式;著名数学家陈景润等在文[3]中,给出了k=1,2,…,20的求和公式。但上述成果中,有的没有指出求和公式中系数之间的关系,有的虽然指出了系数之间的内在连系,但其表述方式和实际计算均较复杂.笔者对sum from m=1 to n(m~k)求和公式中的系数,进行  相似文献   

8.
此文主要阐述[1]中所得不等式在解析函数上若干重要应用。最后证明一个重要的偏差定理(一)主要依据的不等式定理 H_1 设 P≥Q>0,1/P 1/Q=1,1-C_n-C_m≥0及 A_n,B_n≥0则sum from n to A_nB_n≤(sum from n to B_n~Q)~(1/Q-1/P){(sum from n to B_n~Q sum from n to A_n~P)~2-(sum from n to B_n~Q C_n sum from n to A_n~P-sum from n to A_n~P C_n sum from n to B_n~Q)~2}~1/(2P) (1。1)定理 H_2 又 A(x),B(x)≥0 1-C(x) C(y)≥0  相似文献   

9.
设Ω是R~m(m≥2)中一个有界区域,考虑多调和算子组的特征值问题AΛ(△)u~T=λu~T,x∈Ωu~k=(?)u~k/(?)n=…=(?)~(k-1)u~k/(?)n~(k-1)=0,x∈(?)Ω,k=1,2,…,N其中,u=(u~1,u~2,…,u~N),n是(?)Ω的单位外法向量。将特征值按增加的顺序排列为0<λ_1≤λ_2≤…≤λ_n≤…则成立如下不等式λ_(n 1)≤λ_n 4/m~2n~2(sum from i=1 to n sum from h=1 to N λ_i~(1/k))(sum from i=1 to n sum from k=1 to N k(2k m-2)λ_i~(1-1/k)) sum from i=1 to n sum from k=1 to N λ_i~(1/k)/λ_(n 1)-λ_i≥m~2n~2/(sum from i=1 to n sum from k=1 to N 4k(2k m-2)λ_i~(1-1/k))  相似文献   

10.
分子轨道理论中,体系的总能量既可写成 E=2 sum from i to nε_1-sum from i to n sum from j to n(2J_(ij)-K_(ij))+sum from A相似文献   

11.
利用致密性定理获得有界数列{y_n}收敛的一个充分条件:∨ε>0,■N∈Z+,使得当n>Z时,不等式yn-yn-1<ε恒成立。并发现任意项级数收敛的一个判定定理:如果级数sum from n=1 to ∞ a_n有界,且limn→∞a_n=0,则该级数收敛。由此获得:级数sum from n=1 to ∞ sin~(1+2s/t)=n/n~α收敛,其中s∈Z,t∈Z+,0<α≤1。并进行推广:如果s∈Z,t∈Z~+,0<α≤1,则级数sum from n=1 to ∞sin~1+2s/t)(an)/n~α收敛。再获得一个一般性结论:设有界函数f(n)满足0≤f(n)0,k,l∈Z。  相似文献   

12.
1、引言 Riemann ζ—函数ζ(2n)=sum from k=1 to ∞(1/k~(2n))的值,有古典的公式可以计算,但比较复杂。在学习文[1]中建立了sum from k=1 to ∞(1/k~2)=π~2/6的一个简单证明之后,使我联想得能否也建立sum from k=1 to ∞(1/k~4)=π~4/90,sum from k=1 to ∞(1/k~6)=π~6/945,sum from k=1 to ∞(1/k~8)=π~8/9450等的简单证明,并使[1]的方法更进一步推广,形成某种规律,较一般地解决这些问题,这就是此文的目的。  相似文献   

13.
本文给出了勒襄特(Legendre)级数sum from n=0 to ∞a_nP_n(z)在收敛椭园E_p上一点z_0=cosh(μ iβ_0)收敛的充分必要条件为级数sum from n=0 to ∞δ_ne~(nβ0~i)收敛,其中δ_n=n~(-(1/2))e~(nμ)a_n。本文证明了勒襄特级数的亚倍尔(Abel)型定理:若级数sum from n=0 to ∞a_nP_n(z)的收斂椭园为E_μ,z_0=cosh(μ iβ_0),且sum from n=0 to ∞a_nP_n(z_0)收斂,则sum from n=0 to ∞a_nP_n(z)=sum from n=0 to ∞a_nP_n(z_0),这里z→z_0是在E_μ内沿与E_μ正交的双曲线H_(β_0)进行。本文还证明了勒襄特级数的刀培(Tauber)型定理:设级数sum from n=0 to ∞a_nP_n(z)的收斂椭园为E_μ,z_0=cosh(μ iβ_0)为E_μ上一定点,令δ_n=n~(-(1/2))e~(nμ)a_n,如果δ_n=o(1/n),且sum from n=0 to ∞a_nP_n(z)=S,这里z→z_0是在E_μ内沿H_(β_0)进行,sum from n=0 to ∞a_nP_n(z_0)收敛,其和为S。  相似文献   

14.
本文用组合分析的方法及数学归纳法证明了以下一些组合关系式. (1)C(n+k,r)=sum from m=0 to k (k!)/((k-m)!m!)C(n,r-m); (2)sum from m=0 to n K~m C(n,m)=*(1+k)~n; (3)sum from k=0 to n K~m=sum from k=1 to n S(m,k) ((n+1)!)/((k+1)(n-k)!); (4)sum from p=0 to m F(n,p)=((n+m)!)/(n!m!); (5)sum from q=1 to m qF(n,q)=((n+m)!n)/((m-1)!(n+1)!); (6)sum from p=1 to n F(p,m)=((n+m)!)/((m+1)!(n-1)!); (7)sum from r=0 to S (F_(mi2r)F_(n+2r)+F_(m+2r+1)F_(n+2r+1)); =F_(2??+1)(F_(2??+1)F_(m+n+1)+F_(2??)F_(m+n)); (8)sum from k=0 to n C_k=C_(n+5)-2; (9)S_k??5=sum from p=0 to n C_(k+5??)=C_(5n+1+k+γ_(k,5));  相似文献   

15.
一、引言设给定函数,f(z)=sum from n=0 to ∞ c_nz~n (|z|<1),其中α_n是复数。我们使用下列符号: S_n=α_0+α_1……+α_n=S_n~(0) S_n~(p)(p>-1)定义如下: sum from n=0 to ∞ S_n~(p) x~n=1/(1-x)~(p+1) sum from n=0 to ∞α_n x~n —z平面上的闭凸集(闭凸域,直线,射线,线段,点) G_ε—包含G在其内的凸区域,且G_ε的边界点与G的距离ξ≤ε。 Cesaro(齐查罗)求和:如果=S,就说级数sum from n=0 to ∞α_n用p阶Cesaro方法[(c;p)—法]可求和,共和为S,记作sum from n=0 to ∞α_n S. 条件(A):如果函数,f(z)在|z|<1解析,在闭圆|z-x_0|≤1-x。(任意x_0,0≤x_0<1)连续,则称函数,f(z)满足条件(A)。条件(B):如果函数,f(z)在圆|z-x_0|<1-x_0有界,在点z=1有放射边界值: f(1)=f(z), 则称,f(z)满足条件(B)。  相似文献   

16.
文章利用循环矩阵的性质,获得循环图G(n;±S)=(V,E)的特征值λr=sum from j=1 to n ajω(j-1)r,r=0,1,…,n-1。其中ω=cos2π/n+isin2π/n。并且循环图及其补图的拉普拉斯矩阵的谱sum from j=1 to n aj-sum from j=1 to n ajω(j-1)r,n-sum from j=1 to n ajω(j-1)r。  相似文献   

17.
讨论了由有界线性算子sum from n=1 to n ⊕T_i和恒等算子1生成的几种闭子代数的分裂问题。如,设α(T)表示T和1生成的弱闭子代数,那么,什么时候α(sum from i=1 to n ⊕(T_i))=sum from i=1 to n ⊕(T_i)?推广了文[1]的许多结果。  相似文献   

18.
§1.总说我们记在[-π,π]上是勒贝格可积的,以2π为周期的周期函数的全体为L_(2π)。设f(x)∈L_(2π),其富里埃级数是?(f,x)=a_0/2+sum from n=1 to ∞(1/n)(a_ncosnx+b_nsinnx)=a_0/2+sum from n=1 to ∞(1/n)A_n(x) (1)级数(1)的共轭级数是?(f,x) = sum from n=1 to ∞(1/n)(-b_ncosnx+a_nsinnx) 我们还将考虑级数  相似文献   

19.
一般凸函数是由f(x_1+x_2/2)≤1/2[f(x_)1+f(x_2)]…(1)来定义的。在函数连续时也有用f(sum from n=1 to n λ_ix_i)≤sum from n=1 to n λ_if(x_i),λ_i为实数,而sum from n=1 to n λ_i=1…(2)来定义。但当函数连續时,由(1)可(?)(2)这是一个定理。现在用实数的二进位表示法和有限归纳内法来证明这个定理。  相似文献   

20.
1900年12月4日德国物理学家普朗克发表论文,提出能量子假设,称ε_o=hv为能量子。他在这一假设的基础上,又运用经典统计,得出普朗克黑体辐射公式。据经典统计,在相空间dτ内,振子能量为E_n=nε_o的几率与e~(-nεo'KT)成正比,所以在温度为TK时,一个线性谐振子的平均能量是: ■=sum from n=0 to ∞ E_ne~(-nε_0/KT)/sum from n=0 to ∞ e~(-nε_0/KT)=sum from n=0 to ∞ nhve~(-ahv/KT)/sum from n=0 to ∞ e~(-nhv/KT) (sum from n=0 to ∞ ne~(-nx)/sum from n=0 to ∞ e~(-nx))hv  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号