共查询到20条相似文献,搜索用时 0 毫秒
1.
针对Softmax损失监督下各类样本之间区分度不足的问题,提出了一种孤立中心损失监督方法。基于类间离散度尽量大、类内离散度尽量小的原则,提出方法由3部分组成:采用等角分布固定权值,使得全部类间夹角余弦值之和最小,确保不同类别在角度空间的距离最大化;中心聚类思想,最小化每个样本与其所属类别的中心之间的欧氏距离,促使同类样本尽量聚拢;最大化不同类之间的欧氏距离,使得不同类样本在欧氏空间尽量分开。在表情数据集FER2013、FERPlus和RAF-DB上的测试结果显示:提出方法的平均准确率分别达到了73.02%、88.56%和86.26%,相比于Softmax损失函数,分别提升了1.25%、0.44%和0.65%;同时,提出方法比Softmax损失更加稳定(相同配置下多次实验结果的变化程度更小);提出方法的运行速度只比Softmax损失方法略微慢一点,仍然比一些其他方法快。 相似文献
2.
目的 人类年龄是人类识别和搜索任务中的重要特征,现有研究一般将人脸年龄估计视为传统的分类任务,忽略了年龄之间的有序特征,导致估计年龄与真实年龄之间的差距较大,因此,有必要寻找一种方法以缩小估计年龄与实际年龄的差距。方法 提出一种基于双有序性约束卷积神经网络模型(DO-CNN)的人脸图像年龄估计方法。首先,DO-CNN使用基于广义Logistic分布的有序回归模型作为卷积神经网络的分类器,并验证比其他有序分类器在人脸估计任务上的优越性;接着,进一步提出有序竞争比损失函数,在传统竞争比损失函数上,通过引入风险项使损失函数注意到预测年龄与真实年龄的误差,进而指导模型缩小估计年龄与真实年龄的差距。结果 在开源人脸图像年龄数据集FGNET和AgeDB上的对比实验显示:相比现有研究方法,DO-CNN分别提升约12%和3%的准确率,当允许的误差范围扩大后,该优势依然保持。此外,基于广义Logistic分布的有序回归分类器相比基于其他分布的有序回归分类器具有明显提升。结论 实验结果表明:基于双有序性约束的卷积神经网络模型可以明显提升人脸年龄估计的准确率,并减少年龄估计的实际误差。 相似文献
3.
针对目前人脸表情识别存在准确率不高、模型复杂和计算量大的问题,文章提出了一种基于八度卷积改进的人脸表情识别模型(OCNN):使用改进的八度卷积进行特征提取,提高对细节特征的提取效果,降低特征图的冗余,在不增加参数的同时减少运算量,以提高特征提取性能;利用DyReLU激活函数来增强模型的学习和表达能力;使用自适应平均池化下采样层代替全连接层,以减少参数;将模型在大规模数据集上进行预训练,并在FER2013、FERPlus、RAF-DB数据集上进行模型性能验证实验。实验结果表明:训练后的模型权重为10.4 MB,在人脸表情识别数据集FER2013、FERPlus和RAF-DB上的准确率分别达到73.53%、89.58%和88.50%;与目前诸模型相比,OCNN模型的准确性高且计算资源消耗低,充分证明了该模型的有效性。 相似文献
4.
人脸口罩穿戴识别技术可以有效监督及管控人们佩戴口罩.本文基于迁移学习理论,共享经典卷积神经网络部分参数,修改其最后几层连接层,使用8 967张图像样本集进行训练,得到了新模型;同时结合了人脸检测技术,针对检测后人脸子图像,采用图像分类方法实现了快速识别.通过迁移学习对深度网络模型开展迁移训练,解决了因为样本量少导致的准确率低等问题,新模型能够有效解决人脸口罩穿戴识别问题,使源领域知识得到了迁移.通过MATLAB编写迁移学习程序和应用仿真主程序,调用了摄像头硬件实现了真实场景应用仿真.实践证明,该研究具有较强的应用价值. 相似文献
5.
为了解决现有合成孔径雷达(SAR)图像目标识别算法识别率不高、泛化能力不足的问题,提出一种基于卷积神经网络的SAR图像目标识别模型CMNet网络。通过设计针对SAR图像特点的特征提取网络,在损失函数中引入中心损失与Softmax损失联合监督训练过程,兼顾类内聚合和类间分离,提高算法精度和泛化能力。网络模型中所有卷积层后引入批量归一化层加快模型收敛速度、防止过拟合。实验使用美国运动和静止目标获取与识别数据库进行测试,10类目标平均识别率达到99. 30%。结果表明,提出的CMNet网络模型具有较高的识别率和泛化能力,在公开数据集上取得较好结果。 相似文献
6.
人脸面部表情是人机交互和非言语交际的有效方式,对面部表情进行识别并分析,可以获取很多信息,在安全监控、人工智能、军警、心理学等领域有着许多不同的应用。本研究基于深度学习对人脸表情识别进行深入研究,采用Open CV内置算法进行人脸检测,利用卷积神经网络进行面部表情识别,实现对人脸最基本的7种表情包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中立分别进行识别。与传统的人脸表情识别方法相比较,卷积神经网络的识别精度高,训练参数少,在面部表情特征表现明显的情况下,对7种表情的识别精度都能超过70%以上。 相似文献
7.
8.
9.
《四川理工学院学报(自然科学版)》2017,(1):32-37
由于人脸姿态、表情、遮挡物、光照问题的影响,人脸关键点检测时通常会出现较大的误差,为了准确且可靠地检测关键点,提出了一种基于级联卷积神经网络的方法。利用人脸检测器检测到的人脸图像作为输入,第一层卷积神经网络直接检测所有的5个人脸关键点。随后根据这些检测到的点裁剪出5个人脸局部图像,级联的第二层网络使用5个不同的卷积神经网络单独地定位每个点。在实验测试环节,级联卷积神经网络方法的使用将人脸关键点的平均定位误差降低到了1.264像素。在LFPW人脸数据库上的实验结果表明:该算法在定位准确性和可靠性上要优于单个CNN的方法以及其他方法,该算法在GPU(图形处理器)模式下处理一个人脸图像仅需15.9毫秒。 相似文献
10.
针对使用深度学习提取人脸表情图像特征时易出现冗余特征,提出了一种基于多层感知机(MLP)的改进型Xception人脸表情识别网络.该模型将Xception网络提取的特征输入至多层感知机中进行加权处理,提取出主要特征,滤除冗余特征,从而使得识别准确率得到提升.首先将图像缩放为48*48,然后对数据集进行增强处理,再将这些经过处理的图片送入本文所提网络模型中.消融实验对比表明:本文模型在CK+数据集、JAFFE数据集和MMI数据集上的正确识别率分别为98.991%、99.02%和80.339%,Xception模型在CK+数据集、JAFFE数据集和MMI数据集上的正确识别率分别为97.4829%、90.476%和74.0678%,Xception+2lay模型在CK+数据集、JAFFE数据集和MMI数据集上的正确识别率分别为98.04%、84.06%和75.593%.通过以上消融实验对比,本文方法的识别正确率明显优于Xception模型与Xception+2lay模型.与其他模型相比较也验证了本文模型的有效性. 相似文献
11.
在深度学习中,随着神经网络层数的加深,训练网络变得越来越困难,现有的浅层的网络无法明显提升网络的识别效果。针对在原有网络的情况下提升网络识别效果,减少参数的问题,本文提出一种改进的DenseNet网络模型,借鉴Inception V3的思想,利用非对称卷积将DenseNet网络中Dense Block层所包含的3×3卷积分解成3×1和1×3的两个卷积,简化网络结构模型。之后再对改进前与改进后的网络模型在数据集上进行训练,实验结果表明,与经典的DenseNet网络模型相比,改进后的网络模型可以提高图像识别的准确性,降低参数,有效地缩短运行时间。 相似文献
12.
为了解决语音识别中由网络加深导致的低层特征消失、参数量大及网络训练困难的问题,基于Inception V3网络的非对称卷积思想,提出了一种改进的密集连接卷积神经网络(densely connected convolutional neural networks, DenseNet)模型。根据语音识别的长时相关性,通过密集连接块建立起不同层之间的连接关系,从而保存低层特征、加强特征传播;为了得到尺度更丰富的声学特征,将卷积核的范围进行扩大;利用非对称卷积思想分解卷积核,以减少参数量。实验结果表明,相较经典深度残差卷积神经网络模型和原始DenseNet模型,提出的模型在THCHS30数据集上的语音识别性能更好,在保证识别率的情况下,还减少了网络参数量,提高了模型训练效率。 相似文献
13.
人脸表情识别一直是计算机视觉领域的一个难题.近年来,随着深度学习的飞速发展,一些基于卷积神经网络的方法大大提高了人脸表情识别的准确率,但未能充分利用人脸图像中的信息,这是由于对于面部表情识别有意义的特征主要集中在一些关键位置,例如眼睛、鼻子和嘴巴等区域,因此在特征提取时增加这些关键位置的权重可以改善表情识别的效果.为此... 相似文献
14.
针对人脸年龄识别可用数据集普遍不足的问题,为提升可用数据集不变情况下人脸年龄识别的精度,在深度学习(DL)框架中引入标记分布学习(LDL)策略,命名为DL-LDL,其中卷积神经网络用于自动提取人脸特征,改进的标记分布学习用于学习真实年龄及相邻年龄之间的模糊性和多义性,以丰富年龄信息,提高识别精度.将DL-LDL方法在MORPH和FG-NET这2个公开数据集上进行了试验测试.结果表明:DL-LDL方法提高了年龄识别的精度,与现有最先进的人脸年龄识别方法相比,在MORPH和FG-NET上的平均绝对误差分别降低了8.2%和13.8%. 相似文献
15.
16.
【目的】针对Mean squared error(MSE)作为损失函数在人眼感知方面存在局限性,以及基于卷积神经网络的图像超分辨率(Super-resolution,SR)算法生成的图像存在参数较多、计算量较大、训练时间较长、纹理模糊等问题,设计基于深层卷积神经网络的单幅图像超分辨率重建模型。【方法】使用ImageNet预先训练的大型卷积神经网络Visual geometry group(VGG)模型提取图像特征,利用该特征设计视觉感知损失函数进行训练学习,引入亚像素卷积层(Sub-pixel convolution)替换上采样层,缓解生成图像的棋盘效应。【结果】设计的模型对放大两倍的图像进行超分辨率修复,与其他4种超分辨率重建模型的Peak signal to noise ratio(PSNR)值接近,且生成图像的视觉效果更加清晰逼真,细节更加细腻。【结论】该模型可以实现输入不同大小的低分辨率图像而不必多次训练学习不同比例的放大模型,可以实现对不同放大倍数图像的训练和预测,在保持一定PSNR正确率的前提下,放大后的超分辨率图像能够恢复更多纹理细节和更佳视觉效果。 相似文献
17.
针对炼钢生产中采用人工经验判断转炉吹炼时期准确率较低的问题,利用某钢厂转炉炉口火焰图像数据,提出一种基于深度学习的改进DenseNet网络转炉吹炼时期识别算法;该算法以DenseNet-121网络结构为基础进行裁剪,同时在分类层引入Center损失函数,并在100次模型训练中选取精度较高、拟合性较好的一次进行测试。结果表明:该算法通过特征复用,保证了分类精度,裁剪后的网络结构能够提升运算速度;在分类层引入Center损失函数能够改进相邻转炉吹炼时期分类模糊的情况,缩短了平均识别时间,分类的平均精度提高至91.75%。 相似文献
18.
基于卷积神经网络的网络流量识别技术研究 总被引:2,自引:0,他引:2
近年来,深度包检测技术和基于统计特征的网络流量识别技术迅速发展,但它们分别存在不能识别加密流量和依赖人对特征主观选择的缺陷.文章提出了基于卷积神经网络的流量识别方法,将网络数据按照一定的规则转换为灰度图像进行识别,并根据TCP数据包的有序性和UDP数据包的无序性,对原始的网络数据进行了扩展,以进一步提高识别率.实验数据表明,该方法对应用程序和应用层协议两个层次的网络流量具有较高的检测率. 相似文献
19.
首先, 针对人脸表情识别问题提出一种新的多尺度特征选择网络识别方法, 该网络充分结合多尺度网络结构和特征选择结构的优点, 能更有效地提取面部静态图像中的空间信息. 其次, 为验证本文提出的多尺度特征选择网络的识别性能和泛化能力, 在两个经典的人脸表情识别数据集上与一些常用的方法进行对比和交叉验证实验. 实验结果表明, 该网络取得了更好的识别效果, 并且具有良好的泛化能力, 可以灵活地嵌入到人脸表情识别分析系统中. 相似文献
20.