首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
从欧拉方法发展到拉格朗日方法,其中蕴含着变分法的重大变革.在研读原始文献的基础上,以"为什么数学"为切入点和主要目的,对欧拉和拉格朗日的研究方法进行分析和比较,重点探讨拉格朗日δ-算法产生的数学背景、形成过程及重大影响.拉格朗日以摆脱几何直观和简化计算为目标,以消除欧拉方法中微分符号d的双重意义和混用现象为切入点,通过引进符号δ,借助于形式的类比和反复的推演,提炼出运算规则,最终发明了δ-算法.因此拉格朗日对变分法所作的变革,是形式化改造的产物.而这种形式化改造的成功,对18世纪微积分学从几何形态向"代数分析"形态的过渡、几何论证向分析论证的转变起到了不可忽视的推动作用;同时在一定意义上也增进了对符号的信任程度.对变分法历史的这种探究,为全面理解18世纪数学发展的特点提供了一个新视角.  相似文献   

2.
常微分方程在经历了长期的求精确解的努力后逐渐停滞,庞加莱在分析的基础上引入几何方法,开创了常微分方程定性理论,李雅普诺夫则在庞加莱定性分析的基础上,转而进入了新的稳定性研究.通过对两者的比较研究,我们能够对科学历程中新思想、新理论的产生和发展规律有所感悟.  相似文献   

3.
《晓庵新法》中的常数系统   总被引:1,自引:0,他引:1  
《晓庵新法》一书含有各种基本常数、导出常数、计算过程中的中间值900多个,第二卷中的200多个常数尤为重要,是推算这部历法的基础。因此,要理想解《晓庵新法》,首先要弄清每一个名词术语的具体含义。该文首先将对第二卷所列常数的含义进行详细的说明,对一些意义很不明确的术语,给出确定其含义的根据;其次,通过与《西洋新法历书》的常数系统进行比较,探讨《晓庵新法》数据系统的渊源;最后,还对《晓庵新法》中黄道距度的问题进行了探讨。  相似文献   

4.
在“定义”的定义和“操作系统”的定义的基础上,针对“文件”这个计算机学科基本名词,详细分析了其概念内涵,指出了国内外常见教材和词典工具书中相关定义存在的问题,并给出了能揭示概念本质特性的新定义。  相似文献   

5.
摘要 等差是等差数列最核心的本质特征。高阶等差数列(或称n阶等差数列)是等差数列的普遍形式,一阶等差数列是n阶等差数列当n=1时的特例。研究表明,高阶等差数列的差分性质在经济计量领域有明确的体现。例如,单整序列数据I(n)的差分性质即与n阶等差数列密切相关。遗憾的是,以往所见关于等差数列的讨论,大多围绕其一阶情况展开。有些常见的关于等差数列的定义也仅仅适用于一阶条件的假定,不能确切描述等差数列的高阶(二阶及以上)情况。为了适应经济计量研究与实践的发展,有必要重新研讨关于等差数列术语的定义问题。本文尝试提出高阶等差数列“隐蔽公差”的概念,同时给出n阶等差数列的形式表达以及n阶等差数列公差与其相对应一阶等差数列公差的换算关系式D=dnn!,其目的在于放宽约束条件,给出能够涵盖n阶等差数列情况、具有普适性的术语定义。高阶等差数列的差分性质在经济计量领域有明确的体现。例如,单整序列数据I(n)的差分性质即与n阶等差数列密切相关。对于单整序列数据来说,即使原变量数列不服从正态分布,经过数次差分之后也会“剔除掉某种固有的规律”而使数列趋于正态分布。事实上,差分剔除掉的这种“固有的规律性”即是n阶等差数列的主要成分,而所谓“经过数次差分”的次数,就是高阶等差数列的阶次n[1]。一、关于等差数列术语的定义和描述以往关于等差数列的讨论,大多围绕其一阶情况展开。目前常见的关于等差数列的定义(例如《辞海》乃至《数学辞海》当中的解释)也仅仅适用于一阶条件的假定,不能涵盖等差数列的高阶(二阶以上)情况。为了适应经济计量研究与实践的发展,有必要重新提起关于“等差数列”术语的定义问题。本文提出关于等差数列的一个术语:隐蔽公差,并以此为线索展开讨论。本文讨论的数列,仅限于单调递增的正整数序列。作为这些讨论的背景,首先需要了解什么是“等差数列”,以及“n阶等差数列”。顾名思义,等差数列应该是数列的一种。那么什么是数列呢?数列(定义1.0):序贯之数,谓之数列。一组数按第一个、第二个等等排下去就成为数列。其中第一数称为第一项,第二数称为第二项等等。当项数是有限时称为“有限数列”,否则称为“无限数列”。例如,1,10,100,1000,10 000,...和-1/2,-1/3,-1/4,...都是无限数列。经济研究当中涉及的数列大多是有限数列,但若以经济发展的延续论,这些数列则将体现出无限数列的性质。等差数列(定义1.1*):据《辞海》,若有数列从第二项开始,每一项与前一项的差均为常数d,则称该数列为“等差数列”,d,称为“公差”,等差数列的一般形式可以写成a,a+d,...,a+nd,...的形式。任一等差数列的前n项的和为n(首项+末项)/2。例如,自然数列1,2,...,n,...是等差数列,它的前n项之和为n(n+1)/2。显然,所谓“等差数列”的“等差”,就表现在它们具有常数公差d,通常讨论的等差数列为按照从小到大顺序排列的整数序列,故d为大于0的整数。公差(定义1.1.1*):根据《辞海》和《数学辞海》[2]的解释,在以“等差数列”为背景的讨论中,“公差”指的是“等差数列中相邻两项的差”。但是严格说来,这个定义不确切,或者说是不完全的。事实上,等差数列是有阶次的,例如数列1,2,3,4,5,6,...是一阶等差数列,其公差等于(2-1)=(3-2)=(4-3)=...=1;将一阶等差数列中的各个元素平方,则得到1,4,9,16,25,36,...,这是一个二阶等差数列。服从术语层次概念,二阶等差数列当然也是等差数列。但是(4-1)=3,(9-4)=5,(16-9)=7,(25-16)=9,(36-15)=11,...,也就是说,这个数列“相邻两项的差”不相等。这与前文所引“等差数列(定义1.1*)”存在冲突。在严格的意义上,对“公差”这个术语来说,应该是“一阶公差”的简称,其确切的定义表达应该是:(定义1.1.1)“一阶等差数列中相邻两项的差”。二、隐蔽公差和N阶等差数列的形式表达同样,上述所引工具书中关于“等差数列”的定义,实际上也是仅仅针对“一阶等差数列”而言。在高阶情况下,即当n大于1时,等差数列前n项之和的计算公式与一阶情况下的计算方法有所不同。如果按照前述所引关于“等差数列”的定义(定义1.1*),则相当于拒绝承认“高阶等差数列”是“等差数列”,因为根据高阶(二阶以上)等差数列的直观表现,其相邻两项的差并不相等。但是,二阶等差数列经过一次“差分”运算,即以数列的后项减去前面一项,可以得到一个一阶等差数列,这个一阶等差数列具有常数公差。我们称这个“公差”为二阶等差数列的“隐蔽公差”。以最常见的自然数列为例,该数列是具有公差d=1的一阶等差数列,记作{A1(d)},其中d=1,紧随字母A之后的上标数字表示该数列的阶次。对应地,将该数列中各项元素分别做平方运算,则构成一个二阶等差数列,{A2(D)}。定义D为这个数列的“公差”。如是,则分别有:{A1(d)}=1,2,3,4,5,6,7,8,9,… (1.1){A2(D)}=12,22,32,42,52,62,72,82,92,… =1,4,9,16,25,36,49,64,81,… (1.2)数列{A2(D)}没有明显可见的“公差”。但若对其施行一次差分,则得到:{A2-1(D)}=3,5,7,9,11,13,15,17,… (1.3)这是一个一阶等差数列,其公差等于2。对于这个经过一次差分得到的新数列,我们将其记作{A2-1(D)},其中紧随字母A之后的上标算式(2-1)表示对二阶等差数列进行了一次差分。观察{A2-1(D)},显然D=2,这就是高阶等差数列的“公差”,虽然这个公差不能从高阶等差数列的原始形态中直接观察得到,但它却是肯定存在的,由此我们称其为“隐蔽公差”。高阶等差数列具有数值确定的“隐蔽公差”。若非如此,便不能称呼这个数列为“等差数列”。仿照上述方法,继续再对{A2-1(D)}进行一次差分,则可以得到{A2-2(D)},这是一个所有元素都等于D=2的0阶“等差数列”。可以把这种情况看作是n阶等差数列的特例。对于{A2-3(D)}而言,数列当中所有元素皆为0,是更为极端的特例。不失一般性,我们给出关于“隐蔽公差”的定义以及适合所有阶次等差数列的形式表达。隐蔽公差(定义1.1.2):在等差数列中,需要经过一次以上差分运算才能观察得到的高阶等差数列的公差称为“隐蔽公差”,记作D。高阶等差数列具有数值确定的隐蔽公差。等差数列的形式表达(定义1.1.3):对于阶次为N,公差为G的等差数列A,记作{AN(G)},其中上标N可以是数字、算式或字母符号;G是等差数列的广义公差。高阶(二阶以上)等差数列的隐蔽公差D和一阶等差数列的公差d(可以对称为显见公差)统称为等差数列的广义公差。三、 等差数列与算术级数的概念比较为了继续以下的讨论,需要简单回顾关于初等级数当中算术级数的概念并与等差数列的概念加以对照[1]。一般来说,初等级数包括算术级数(也称等差级数)和几何级数(也称等比级数)。所谓等差数列,是一组数据按照一定(等差)规律依次排列的形式。这种形式类似于数学定义的等差级数,亦即算术级数,但是数列与级数二者所关心的具体侧面有所不同。数学定义的等差级数系指一和,即数列当中所有相关数项的加总值,而关于等差数列的研究似乎更关注数列各元素之间的关系,甚至不同阶次数列间数据变换的内在联系。如果考虑等差数列“前n项的和”,则与算术级数的关注点近似相同。通常意义上数列研究的对象是确切的数量关系,而不考虑随机变量的影响。经济计量学研究涉及的数据序列则表现为常规等差数列与随机变量的叠加,甚至等差数列的公差也可能存在随机扰动。例如,从1到100的自然数的和是一阶算术级数,其首项a=1,末项z=100,公差d=1,这个算术级数的值S=1+2+…+100=5050。显然,自然数构成公差为d=1的等差数列。相对应的,所有自然数的平方构成另一数列,这个数列的元素分别为12,22,32,42,52,…,即1,4,9,16,25,…,我们称其为2阶等差数列。同理,所有自然数的立方构成另一高阶等差数列,这个数列的元素分别为13,23,33,43,53,…,即1,8,27,64,125,…,我们称其为3阶等差数列。余此类推。等差数列的元素中可以含有截距因素。为简化起见,在本文的讨论中假定各数列元素的截距为0。记一阶等差数列为{A1(d)},d>0,其中包含数列元素ai,i=1,2,3,…,I。记2阶等差数列为{A2(D)},D>0,其中包含数列元素,i=1,2,3,…,I。记3阶等差数列为{A3(D)},D>0,其中包含数列元素,i=1,2,3,…,I。一般地,记n阶等差数列为{An(D)},D>0,其中包含数列元素,i=1,2,3,…,I。在这些记述中,D均为隐蔽公差,需要通过对数列内各相邻元素进行n-1次差分后得到。在n次及n次以上的差分过程中,各次所得之差均为0。四、隐蔽公差与对应一阶等差数列公差的关系高阶等差数列(或n阶等差数列)是等差数列的普遍形式,一阶等差数列是n阶等差数列当n=1时的特例。一阶等差数列具有常数公差d。对n阶等差数列而言,各相邻项的差乍看起来并不相等,只在第n-1次差分(后项减去前项)时才是常数。定义这个常数为n阶等差数列的公差,记作D。由于n阶等差数列的公差D不能从原数列中直接观察得出,故称其为隐蔽公差。高阶等差数列之“等差”即源于此。高阶等差数列的公差虽然“隐蔽”却是“确定的”。对n阶等差数列进行差分,其过程产生的结果即为n-1阶数列。称为“对等差数列的降阶运算”。按照上述定义,一阶等差数列记作{A1(d)} 。当公差d=0时,{A1(d)}退化成为{A0(0)},即所有元素相等的0阶数列。如果对应于数列{A0(0)}当中的每一元素ai=a分别加上随机误差项εt,则数列可表为截距水平在a的随机过程。这是一个I(0)即0阶单整过程。如前所述,对于{A1(d)},d>0,若取数列当中各元素ai(ai=ai-1+d)之平方构成另一数列,即可得到一个2阶等差数列。记作{A2(D)}。陈列{A2(D)}可知,直观上这个数列已经不再是等差数列。即ai-ai-1≠ai+1-ai。但是,对{A2(D)}进行一次差分得到的新数列{A2-1(D)},则是公差为D的1阶等差数列。n阶等差数列的隐蔽公差D是与其相对应的一阶等差数列公差d和数列阶次n的函数,即D=f(d,n)。此时满足关系D=dnn!。其中:D为n阶等差数列的公差(当n>1时即为隐蔽公差);d是与该n阶等差数列相对应的一阶等差数列的公差[4]。按照这个公式可以求出,对应于自然数列(公差d=1)的2阶等差数列和3阶等差数列的隐蔽公差D分别是D=122!=2和D=133!=6。同理,对应于公差d=2的数列(例如奇数数列或偶数数列)的2阶等差数列和3阶等差数列的隐蔽公差分别是D=222!=8和D=233!=48。总之,“等差”是等差数列最核心的本质特征。所谓等差数列,必有“等差”存在。对阶次n>1的等差数列而言,非经运算不能见其等差。因此,在高阶情况下,数列之等差是隐蔽行为。阶次越高,其公差隐蔽越深。另一方面,这个公差虽则隐蔽,却有明确的数值,并与与其相对应的一阶等差数列公差存在有稳定的换算关系。人们把“高阶算术数列”称为“高阶等差数列”,即是对其本质特征的宣言。  相似文献   

6.
从现代物理学看构成论到生成论的转变   总被引:3,自引:1,他引:2  
正如从前的哲学认识早就从存在转为变易一样,20世纪物理学的发展,亦使得对微观现象的认识,已经从构成论逐渐转向了生成论。基于构成论的观念而提出来的“物质是否无限可分”的问题,不再是一个适当的话题。  相似文献   

7.
随着现代军事科学技术的快速发展,新的军事观点、军事思想、作战理论、作战样式、武器装备不断涌现,为表述这些新观点、新思想、新理论和新装备的军事概念及时赋予准确定义,是军事学者和专家们的一项重要任务。根据术语学理论和多年来的军事实践,文章主要就撰写军事术语定义应把握的基本问题进行了初步探讨。  相似文献   

8.
“功能”是一个被广泛使用的概念,也是一个没有客观和统一定义的概念。在功能模拟和智能CAD等技术的应用和发展中,急需通用和统一的功能定义及其表达体系。本文研究了一种基于特征的功能定义和符合一阶谓词逻辑的功能表达体系。  相似文献   

9.
直至近代,西方法学家从罗马法与基督教传统尤其是托马斯主义中获取的“lex naturalis/ius naturale(自然法)”,一方面强调的是一种命令与戒律,另一方面更为强调正当理性对上帝要求与禁止的命令的遵从,本质上是一种“lex morum(道德的法)”。这种对“自然法”内在化的理解是希腊因素与基督教因素混杂的结果,当“自然法则(lex naturae/law of nature)”作为一种外在“施加的法则(imposed law)”被理解时,“自然法则”开始在形而上学层次上被用于理解自然整体的过程与秩序。当物理——数学路径开始量化自然法则的定义与理解之时,经验——实验的路径并未被完全抛弃,两种路径最终在艾萨克·牛顿那里实现了综合。随着对自然掌控的深入,18世纪之后“自然法则”概念不再指涉上帝,而且被专门的法则或规则所取代。  相似文献   

10.
1060年3月20日光明日报刊載了中国科学院兰州地質研究所王建生同志写的“要革自然的命,必先革思想的命”一文。文章中指出該所石油地質研究组的青年研究人员,在党的总路线的光辉照耀下,在全国大跃进形势的鼓舞下,在解放以来石油勘探取得巨大成果的基础上,发揚敢想、敢干的共产主义风格,大搞羣众运动,仅用5个月的时間,编著出“中国西北区陆相油气田的形成及其分布規律”(简称“石油地質专著”)一書,提出了一些新穎的石油地质理論見解,并以大量的論据突破长期以来国內外認为陆相地层不能大量生油的旧的石油成因的观点,駁斥了帝国主义国家的资产阶級学者因我国主要为陆相地层而誣蔑我国为“貧油国”的謬论,展示出我国石油工业的灿烂远景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号