首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sung LY  Gao S  Shen H  Yu H  Song Y  Smith SL  Chang CC  Inoue K  Kuo L  Lian J  Li A  Tian XC  Tuck DP  Weissman SM  Yang X  Cheng T 《Nature genetics》2006,38(11):1323-1328
Since the creation of Dolly via somatic cell nuclear transfer (SCNT), more than a dozen species of mammals have been cloned using this technology. One hypothesis for the limited success of cloning via SCNT (1%-5%) is that the clones are likely to be derived from adult stem cells. Support for this hypothesis comes from the findings that the reproductive cloning efficiency for embryonic stem cells is five to ten times higher than that for somatic cells as donors and that cloned pups cannot be produced directly from cloned embryos derived from differentiated B and T cells or neuronal cells. The question remains as to whether SCNT-derived animal clones can be derived from truly differentiated somatic cells. We tested this hypothesis with mouse hematopoietic cells at different differentiation stages: hematopoietic stem cells, progenitor cells and granulocytes. We found that cloning efficiency increases over the differentiation hierarchy, and terminally differentiated postmitotic granulocytes yield cloned pups with the greatest cloning efficiency.  相似文献   

2.
3.
Genomic imprinting is an epigenetic process in which the activity of a gene is determined by its parent of origin. Mechanisms governing genomic imprinting are just beginning to be understood. However, the tendency of imprinted genes to exist in chromosomal clusters suggests a sharing of regulatory elements. To better understand imprinted gene clustering, we disrupted a cluster of imprinted genes on mouse distal chromosome 7 using the Cre/loxP recombination system. In mice carrying a site-specific translocation separating Cdkn1c and Kcnq1, imprinting of the genes retained on chromosome 7, including Kcnq1, Kcnq1ot1, Ascl2, H19 and Igf2, is unaffected, demonstrating that these genes are not regulated by elements near or telomeric to Cdkn1c. In contrast, expression and imprinting of the translocated Cdkn1c, Slc22a1l and Tssc3 on chromosome 11 are affected, consistent with the hypothesis that elements regulating both expression and imprinting of these genes lie within or proximal to Kcnq1. These data support the proposal that chromosomal abnormalities, including translocations, within KCNQ1 that are associated with the human disease Beckwith-Wiedemann syndrome (BWS) may disrupt CDKN1C expression. These results underscore the importance of gene clustering for the proper regulation of imprinted genes.  相似文献   

4.
Early death of mice cloned from somatic cells   总被引:12,自引:0,他引:12  
Here we report that the lifespan of mice cloned from somatic cells is significantly shorter than that of genotype- and sex-matched controls, most likely due to severe pneumonia and hepatic failure. This finding demonstrates the possibility of long-term deleterious effects of somatic-cell cloning, even after normal birth.  相似文献   

5.
Cloning of male mice from adult tail-tip cells.   总被引:34,自引:0,他引:34  
  相似文献   

6.
Restoration of regulated insulin secretion is the ultimate goal of therapy for type 1 diabetes. Here, we show that, unexpectedly, somatic ablation of Foxo1 in Neurog3(+) enteroendocrine progenitor cells gives rise to gut insulin-positive (Ins(+)) cells that express markers of mature β cells and secrete bioactive insulin as well as C-peptide in response to glucose and sulfonylureas. Lineage tracing experiments showed that gut Ins(+) cells arise cell autonomously from Foxo1-deficient cells. Inducible Foxo1 ablation in adult mice also resulted in the generation of gut Ins(+) cells. Following ablation by the β-cell toxin streptozotocin, gut Ins(+) cells regenerate and produce insulin, reversing hyperglycemia in mice. The data indicate that Neurog3(+) enteroendocrine progenitors require active Foxo1 to prevent differentiation into Ins(+) cells. Foxo1 ablation in gut epithelium may provide an approach to restore insulin production in type 1 diabetes.  相似文献   

7.
Mice carrying mitochondrial DNA (mtDNA) with pathogenic mutations would provide a system in which to study how mutant mtDNAs are transmitted and distributed in tissues, resulting in expression of mitochondrial diseases. However, no effective procedures are available for the generation of these mice. Isolation of mouse cells without mtDNA (rho0) enabled us to trap mutant mtDNA that had accumulated in somatic tissues into rho0 cells repopulated with mtDNA (cybrids). We isolated respiration-deficient cybrids with mtDNA carrying a deletion and introduced this mtDNA into fertilized eggs. The mutant mtDNA was transmitted maternally, and its accumulation induced mitochondrial dysfunction in various tissues. Moreover, most of these mice died because of renal failure, suggesting the involvement of mtDNA mutations in the pathogeneses of new diseases.  相似文献   

8.
Cardiac defects and renal failure in mice with targeted mutations in Pkd2   总被引:13,自引:0,他引:13  
PKD2, mutations in which cause autosomal dominant polycystic kidney disease (ADPKD), encodes an integral membrane glycoprotein with similarity to calcium channel subunits. We induced two mutations in the mouse homologue Pkd2 (ref.4): an unstable allele (WS25; hereafter denoted Pkd2WS25) that can undergo homologous-recombination-based somatic rearrangement to form a null allele; and a true null mutation (WS183; hereafter denoted Pkd2-). We examined these mutations to understand the function of polycystin-2, the protein product of Pkd2, and to provide evidence that kidney and liver cyst formation associated with Pkd2 deficiency occurs by a two-hit mechanism. Pkd2-/- mice die in utero between embryonic day (E) 13.5 and parturition. They have structural defects in cardiac septation and cyst formation in maturing nephrons and pancreatic ducts. Pancreatic ductal cysts also occur in adult Pkd2WS25/- mice, suggesting that this clinical manifestation of ADPKD also occurs by a two-hit mechanism. As in human ADPKD, formation of kidney cysts in adult Pkd2WS25/- mice is associated with renal failure and early death (median survival, 65 weeks versus 94 weeks for controls). Adult Pkd2+/- mice have intermediate survival in the absence of cystic disease or renal failure, providing the first indication of a deleterious effect of haploinsufficiency at Pkd2on long-term survival. Our studies advance our understanding of the function of polycystin-2 in development and our mouse models recapitulate the complex human ADPKD phenotype.  相似文献   

9.
Genomic imprinting is an epigenetic modification that results in expression from only one of the two parental copies of a gene. Differences in methylation between the two parental chromosomes are often observed at or near imprinted genes. Beckwith-Wiedemann syndrome (BWS), which predisposes to cancer and excessive growth, results from a disruption of imprinted gene expression in chromosome band 11p15.5. One third of individuals with BWS lose maternal-specific methylation at KvDMR1, a putative imprinting control region within intron 10 of the KCNQ1 gene, and it has been proposed that this epimutation results in aberrant imprinting and, consequently, BWS1, 2. Here we show that paternal inheritance of a deletion of KvDMR1 results in the de-repression in cis of six genes, including Cdkn1c, which encodes cyclin-dependent kinase inhibitor 1C. Furthermore, fetuses and adult mice that inherited the deletion from their fathers were 20-25% smaller than their wildtype littermates. By contrast, maternal inheritance of this deletion had no effect on imprinted gene expression or growth. Thus, the unmethylated paternal KvDMR1 allele regulates imprinted expression by silencing genes on the paternal chromosome. These findings support the hypothesis that loss of methylation in BWS patients activates the repressive function of KvDMR1 on the maternal chromosome, resulting in abnormal silencing of CDKN1C and the development of BWS.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Mammals have been cloned from adult donor cells. Here we report the first cases of mitochondrial DNA (mtDNA) heteroplasmy in adult mammalian clones generated from fetal and adult donor cells. The heteroplasmic clones included a healthy cattle equivalent of the sheep Dolly, for which a lack of heteroplasmy was reported.  相似文献   

17.
18.
Eukaryotic chromosomes are packaged in nuclei by many orders of folding. Little is known about how higher-order chromatin packaging might affect gene expression. SATB1 is a cell-type specific nuclear protein that recruits chromatin-remodeling factors and regulates numerous genes during thymocyte differentiation. Here we show that in thymocyte nuclei, SATB1 has a cage-like 'network' distribution circumscribing heterochromatin and selectively tethers specialized DNA sequences onto its network. This was shown by fluorescence in situ hybridization on wild-type and Satb1-null thymocytes using in vivo SATB1-bound sequences as probes. Many gene loci, including that of Myc and a brain-specific gene, are anchored by the SATB1 network at specific genomic sites, and this phenomenon is precisely correlated with proper regulation of distant genes. Histone-modification analyses across a gene-enriched genomic region of 70 kb showed that acetylation of histone H3 at Lys9 and Lys14 peaks at the SATB1-binding site and extends over a region of roughly 10 kb covering genes regulated by SATB1. By contrast, in Satb1-null thymocytes, this site is marked by methylation at H3 Lys9. We propose SATB1 as a new type of gene regulator with a novel nuclear architecture, providing sites for tissue-specific organization of DNA sequences and regulating region-specific histone modification.  相似文献   

19.
Positional cloning of a novel gene influencing asthma from chromosome 2q14   总被引:13,自引:0,他引:13  
Asthma is a common disease in children and young adults. Four separate reports have linked asthma and related phenotypes to an ill-defined interval between 2q14 and 2q32 (refs. 1-4), and two mouse genome screens have linked bronchial hyper-responsiveness to the region homologous to 2q14 (refs. 5,6). We found and replicated association between asthma and the D2S308 microsatellite, 800 kb distal to the IL1 cluster on 2q14. We sequenced the surrounding region and constructed a comprehensive, high-density, single-nucleotide polymorphism (SNP) linkage disequilibrium (LD) map. SNP association was limited to the initial exons of a solitary gene of 3.6 kb (DPP10), which extends over 1 Mb of genomic DNA. DPP10 encodes a homolog of dipeptidyl peptidases (DPPs) that cleave terminal dipeptides from cytokines and chemokines, and it presents a potential new target for asthma therapy.  相似文献   

20.
Isolation of a candidate gene for Norrie disease by positional cloning.   总被引:17,自引:0,他引:17  
The gene for Norrie disease, an X-linked disorder characterized by progressive atrophy of the eyes, mental disturbances and deafness, has been mapped to chromosome Xp11.4 close to DXS7 and the monoamine oxidase (MAO) genes. By subcloning a YAC with a 640 kilobases (kb) insert which spans the DXS7-MAOB interval we have generated a cosmid contig which extends 250 kb beyond the MAOB gene. With one of these cosmids, microdeletions were detected in several patients with Norrie disease. Screening of cDNA libraries has enabled us to isolate and sequence a likely candidate gene for Norrie disease which is expressed in retina, choroid and fetal brain. No homologous sequences were found in DNA and protein databases indicating that this cDNA is part of a gene encoding a 'pioneer' protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号