共查询到20条相似文献,搜索用时 62 毫秒
1.
近年来,天气预报中的空气质量预报成为大众尤为关心的热点,由于二氧化硫对空气质量水平变化的影响较大,因此准确预测二氧化硫的浓度变化尤为重要.采用XGBoost模型对Prophet模型的预测误差进行修正,建立改进的Prophet融合误差预测模型,对于空气质量中的关键指标二氧化硫进行时序预测.将时序数据输入Prophet模型,对Prophet生成的预测结果与源输入比较求出残差,构建关于残差的时序序列,利用XGBoost进行残差时序建模,获取残差的修正值,将修正值返回输入到Prophet模型.通过上述步骤,构建特定时序数据融合模型.实验数据表明,融合模型在预测结果中的平均绝对误差和均方根误差分别为1.08和1.38,与Prophet相比,误差指标分别降低2.47,2.45;与差分整合移动平均自回归模型相比,误差指标分别降低0.49,0.47;与XGBoost模型相比,误差指标分别降低0.54,0.52.证明融合模型的预测精度优于上述模型. 相似文献
2.
网络流量预测是有效保障用户QoS措施之一。当前深度学习为基础的网络算法预测中没有充分利用网络拓扑信息。为此,提出了基于高阶图卷积自编码器的网络流量预测模型。该流量预测模型基于软件定义网络(SDN)架构,利用高阶图卷积网络(GCN)获取网络拓扑中的多跳邻域之间的流量相互影响关系,采用门控递归单元(GRU)获取网络的时间相关性信息,利用自编码模型来实现无监督学习和预测。在Abilene网络上采用真实数据进行了仿真对比分析试验,结果表明,提出的方法在网络流量检测方面的MAPE值为41.56%,低于其它深度学习的方法,同时预测准确率方面也达到最优。 相似文献
3.
热力系统的状态参数变化可以实时反映系统的运行状态,针对热力系统参数运行数据预测手段匮乏的现状,基于4种算法提出一种单参数预测方法并简称MWSA,对当前设备状态参数进行分解降噪、趋势提取和时序预测,并将预测结果作为下一步运行管理策略和装备维修的参考,对系统的长期安全稳定运行具有重要意义.首先,利用中值回归经验模态分解(MREMD)方法将监测得到的运行状态参数分解为若干个本征模态函数(IMF)和残余分量.然后,对不符合筛选条件的分量进行小波阈值降噪(WTD),并将去噪后的分量与原本符合筛选条件的分量重组成新的IMF分量.最后,利用基于奇异值分解(SVD)和优化参数排列熵(PE)的K-means聚类算法,对重组后的IMF分量进行分类,取熵值较低的一类分量重构为趋势项并采用整合滑动平均自回归模型(ARIMA)进行预测.经实际案例验证,该方法能够有效克服原始参数时序中高频噪声的干扰,与不采用降噪处理的同类方法相比,该方法预测的准确度更高. 相似文献
4.
段进 《东南大学学报(自然科学版)》1996,(6)
现行的小城镇规划规模预测如何补充完善?规模确定后如何分步实施?这些问题是我们当今小城镇能否良性发展的关键问题.本文从理论与实践两方面对其进行了探索研究 相似文献
5.
针对尾矿坝位移变形的动态特性和传统预测模型在进行尾矿坝位移预测中的不足,提出了一种基于时序分解和麻雀搜索算法-长短时记忆-注意力机制(sparrow search algorithm-long short-term memory-attention mechanism, SSA-LSTM-Attention)模型的尾矿坝位移预测方法。首先,通过改进的自适应噪声完备集合经验模态分解算法(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)将尾矿坝位移监测数据进行分解为趋势项和波动项;其次,一方面采用高斯拟合方法对趋势项进行拟合预测,另一方面通过灰色关联度进行波动项相关影响因子筛选,并将注意力机制与LSTM相结合,建立了基于注意力机制及LSTM的波动项位移预测模型,同时利用SSA对该模型的超参数寻优;最后,将趋势项与波动项叠加得到总的位移预测值。以攀西地区尾矿库为例对模型性能进行了验证,并与反向传播(back propagation, BP)、LSTM、LSTM-Atte... 相似文献
6.
为提升烟草市场监管水平,通过某烟草专卖局的协作调研和历史销售数据,构建基于深度自回归网络(Deep auto regression network, DARN)和季节性自回归差分移动平均模型(Seasonal auto regression integrated moving average, SARIMA)的混合预测模型。然后以预测销量为基础进行异常检测,设计了烟草商户违法销售预警模型。实验表明混合预测模型较单个模型预测误差均有改善。预警模型在测试集上达到50%查实率,满足市场监管预警基本要求。 相似文献
7.
为了实时掌握液压泵的健康状况,提高对泵的监控能力,提出一种基于电子控制液压泵的可靠性在线测试与健康管理系统方案,对现有控制器进行改进设计,使其具备实时采集液压泵的运行参数的功能,并可以通过工业以太网将参数送至云数据中心进行分析,以实现液压泵的在线健康管理和液压泵可靠性评估与寿命预测.结果表明,该方案可以实现液压泵寿命的在线预测与健康管理,同时减少时间成本,降低实验损耗. 相似文献
8.
为降低过时海洋养殖环境数据对后续学习的影响和解决单一模型随机初始化输入权重的问题,提出一种基于MA-FOSELM-OTF的海洋养殖环境在线预测模型.采用模型平均化(model averaging, MA)算法对全在线顺序极限学习机(fully online sequential extreme learning machine, FOSELM)进行集成,以降低输入权重初始化引起的随机性;在FOSELM中引入过时遗忘机制(obsolete to forget, OTF),对过时的数据进行遗忘加权,降低其对顺序学习的影响;利用FOSELM递推计算所得输出结果集成所有输出结果,取其平均值作为MA-FOSELM-OTF在线预测模型的最终输出.结果表明,MA-FOSELM-OTF在海洋养殖环境数据在线预测任务中的预测性能优于其他对比模型,可为海洋养殖预警平台提供参考. 相似文献
9.
提出一种基于注意力叠加与时序特征融合的目标检测方法.在端到端目标检测(DETR)网络的基础上,依据注意力机制特性,使用注意力权重叠加的方式提取目标物像素级标识,用于实例轨迹的划分.为使目标检测与轨迹跟踪协同作用,通过时序特征融合的方式融合之前轨迹跟踪信息,调整当前帧目标检测效果,从而充分利用视频载体提供的时间维度信息.在公开数据集上,对文中方法进行验证,结果表明:文中方法能有效识别被遮挡的目标物,具有较强鲁棒性. 相似文献
10.
李培根 《华中科技大学学报(自然科学版)》1991,(6)
本文研究了以AR(自回归)时序模型用于圆度预测补偿控制问题;从最小方差控制的角度,指出了AR模型的局限性而应代之以ARV模型.文中讨论了运用自校正调节器的可能性,以克服加工环境慢时变特性对预测控制的影响. 相似文献
11.
在日常生活中广泛存在着各种时间序列数据,发现时间序列知识、对时间序列进行预测正成为数据挖掘与知识发现的重要内容.首先提出了基于云模型的时间序列预测机制,该机制以云理论为知识表示的理论基础,提出了两种预测知识:准周期变化规律和当前趋势,并综合两种不同粒度的预测知识实现了时间序列的预测.然后着重于运用云模型进行知识表达、定量数值与定性知识的转换以及综合不同时间粒度的知识进行时间序列预测. 相似文献
12.
一种基于小波网络的混沌时间序列判定 总被引:2,自引:0,他引:2
在对混沌时间序列与随机序列的不同特征进行分析的基础上,提出一种可对二者予以区分的判定算法.并结合具有优异特性的小波函数,构造一种小波神经网络.最终给出基于小波网络的集成的混沌时间序列判定-预测算法. 相似文献
13.
Takens理论和小波分析在非线性预测中的应用 总被引:1,自引:0,他引:1
以 Takens理论为基础 ,将小波和时间序列分析相结合 ,对时间序列进行非线性预测 .首先 ,对混沌吸引子做非线性长期预测 ;其次 ,对经济时间序列做非线性短期预测 ;另外 ,指出对于用充分多个小波基函数 φmn来逼近原时间序列的预测误差可以任意小的性质 . 相似文献
14.
运用SAS软件系统中的一些时间序列建模方法及回归分析方法对我国上海证券交易所的上证综合指数作了预测分析 ,得到了较高的预测精度 ,为预测股票市场的整体走势提供了一种方便实用的方法 . 相似文献
15.
基于实际交通流变化的不确定性和交通系统时变复杂的特征,应用小波分析理论,对原始交通流数据进行消噪处理,使消噪后的数据更能反映交通流的本质及变化规律。再针对交通流的非线性特征及其短期可预测性,应用混沌时间序列预测模型来预测短时交通量。结果表明:先进行小波消噪再进行预测所得的结果与实测值有更高的拟合度,可以用于短时交通流的预测。 相似文献
16.
针对PM2.5浓度预测模型效果不稳定、泛化能力差的问题,以循环神经网络和注意力机制为基础,提出了二向注意力循环神经网络(TDA RNN)。首先,TDA-RNN模型通过注意力机制获取输入数据的时序注意力和类别注意力,并将其进行融合;然后通过特征编码器对融合后的数据进行编码,获得中间特征;最后将中间特征与PM2.5浓度的历史信息融合,并通过特征解码器获取预测值。对北京地区的PM2.5浓度进行了预测。结果表明,相比前向型神经网络、长短期记忆神经网络、门控循环单元模型和滑动平均模型,TDA-RNN模型预测精度更高;在抗干扰测试中,当输入数据存在无关因素时,TDA RNN模型的预测精度出现轻微下降,但仍高于其他模型。该二向注意力循环神经网络特征提取能力强,预测精度高,同时可适用于其他场景的多变量时间序列预测。 相似文献
17.
基于简单遗传算法的神经网络训练速度慢、易陷入局部极值,用具有较好的全局搜索能力自适应遗传算法来优化神经网络权值和国值,设计了基于自适应遗传算法的BP神经网络的股票预测系统.该系统根据对股票历史数据分析,预测股价未来几天时间的走势.结果表明,改进算法具有很强的可行性和高效性. 相似文献
18.
用周期模型和近邻算法预测话务量时间序列 总被引:1,自引:1,他引:1
客服中心话务量虽然具有周期性,但在不同时间遵循不同变化规律,这是话务量预测的难点。针对这个问题,以某电信公司一年的实际话务数据为基础,分别采用周期模型和基于实例的近邻算法进行话务量时间序列预测,并对比分析了两种预测方法的效果。实验数据表明,对工作日话务量的预测,周期模型的预测效果优于近邻算法;对非工作日话务量的预测,近邻算法的预测效果优于周期模型。为取得更好的预测效果,实现了周期模型和近邻算法相结合的预测方法。结果表明,在最好的情况下,该方法的预测精度比周期模型提高约19.7%,比近邻算法提高约48.8%。 相似文献
19.
孙振华 《上海师范大学学报(自然科学版)》1996,(4)
人为灾害的原始数列是灰色系统,应用灰色数列预测GM(1,1)模型,导出该数列的响应函数,对上海城郊结合部的沪闵路的交通事故作出预测,并对预测模型做了检验,检验精度为1级.在原始数列摆动幅度较大的情况下,对南京东路沿线地区的火灾,用拓扑图形预测法进行预测.这两种方法的预测为人为灾害的防治决策部署提供了依据. 相似文献
20.
结合P2P网贷平台的特点,融合Logistic回归和Tabnet模型,提出一种P2P网贷违约预测方法。采集人人贷平台借贷数据,并对数据进行清洗与加工预处理;通过信息价值法和相关性分析,对众多解释变量进行筛选,以借款状态作为因变量,采用Tabnet神经网络进行训练,根据训练得到的特征重要性选择关键的解释变量;将Tabnet神经网络预测结果作为新的训练数据集,构建Logistic回归模型;将人人贷数据集输入Logistic回归学习与训练,以训练好的Logistic回归用于网贷违约预测。实验结果表明,Tabnet模型的网贷违约平均预测准确率和精确率分别为9958%、9547%,Logistic回归的平均准确率和精确率分别为9872%、9221%,而融合模型的平均准确率和精确率分别为9960%、9672%;在3个测试集上的准确率标准差分别为0001 4、0000 6、0000 5,精确率标准差分别为0034 4、0013 3、0013 2。表明融合Logistic回归与Tabnet的网贷违约预测方法具有Logistic回归模型的可解释性与稳定性,可提高单一模型的预测精确度。 相似文献