首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
RV减速器扭转刚度特性分析   总被引:10,自引:0,他引:10  
以广泛应用于机器人关节的RV减速器为对象,针对其结构特点,构建了减速器整机的几何模型,以及在ANSYS环境下考虑轴承刚度、轮齿啮合刚度及各构件弹性的有限元模型,分析得出了对应曲柄轴自转1周的整机扭转刚度的变化规律;与实验结果比较,验证了该模型的有效性与计算精度.在此基础上,应用该模型进一步分析了摆线轮与针齿啮合齿数以及轴承刚度变化对整机扭转刚度的影响规律.结果表明:轴承刚度是影响整机扭转刚度变化的主要因素;在分析整机扭转刚度特性时,将轴承刚度按非线性变化规律考虑时能够更精确地揭示整机的扭转刚度特性.  相似文献   

2.
建立了考虑齿侧间隙、时变啮合刚度等因素下的单自由度齿轮系统非线性动力学模型,采用变步长Runge-Kutta法对系统运动微分方程进行数值求解.结合系统的分岔图、Lyapunov指数图、相图、庞加莱映射图、时间相应图,分析系统随阻尼比变化时的动力学特性和啮合刚度对系统的影响,得到系统的混沌运动形成过程.结果表明,随着阻尼比变化,系统表现出丰富的动力学特性,同时啮合刚度影响系统的分岔点位置.  相似文献   

3.
为了探究行星齿轮减速器的传动情况,对某实际行星齿轮减速器进行了静态分析、模态分析以及裂纹对结构固有频率影响的分析.运用SolidWorks三维软件对行星齿轮减速器进行建模与装配,借助有限元分析软件ANSYS Workbench对行星齿轮传动系统进行仿真模拟.分别通过瞬态动力学直接积分法和模态分析理论获得了行星齿轮轮齿啮...  相似文献   

4.
本文应用齿轮啮合的研究方法来处理滚子-平底从动摆杆共扼凸轮机构,将齿轮研究领域内的相关概念推广到该类机构中去,从而揭示了共轭凸轮机构的本质特征,获得一系列重要参数的精确计算公式。  相似文献   

5.
变速箱齿轮啮合动力学的数字仿真   总被引:7,自引:0,他引:7  
变速箱中齿轮传动过程通常分为单齿为啮合区和双齿对啮合区,为了详细研究这一齿轮传动力学过程,在给出双齿对啮合动力学方程的同时,引入了时间系数并制定了算法使其离散化,建立了双齿对啮合的动力学仿真模型。  相似文献   

6.
单级齿轮传动系统非线性动力学特性分析   总被引:3,自引:0,他引:3  
建立综合考虑齿侧间隙、时变啮合刚度、综合啮合误差等因素下的直齿轮副的单自由度非线性动力学模型,利用变步长Runge-Kutta法对单自由度运动微分方程进行数值求解.结合系统的分岔图、相图、Poincaré映射图以及FFT频谱图,分析系统在不同侧隙值下,啮合刚度变化时的动力学特性,得到系统的混沌运动形成过程.结果表明侧隙值影响到系统倍化分岔的临界值,而对系统的叉式分岔及其分岔值没有影响.  相似文献   

7.
在建立齿轮啮合作用的基础上,建立了某型齿轮增速非直联压缩机转子系统有限元模型.为更能体现含齿轮转子系统的特点,首先对单轴进行分析,并在此基础之上对含齿轮啮合的整机进行了动力学特性分析,包括弯曲振动、扭转振动以及弯扭耦合振动.分析结果显示:由于齿轮啮合效应的存在,使得增速箱系统出现了新频率;轴套对耦合系统的扭转影响主要体现在第3,4阶上;而弯扭耦合特性中齿轮的耦合作用较弱.因此认为,在进行该类转子系统的设计时应充分考虑齿轮的啮合作用,以保证系统设计的缺陷达最低.研究结果可以为相关系统的设计工作及其振动控制提供理论参考.  相似文献   

8.
本文分析了高速、重载齿轮啮合刚度的变化和弹性变形的影响,以及由此产生的啮人、啮出冲击,传动过程中瞬时角速度发生变化而引起的附加动载荷、振动和噪声,给出了修缘起始点的计算公式以及修缘渐开线压力角与齿廓法向修缘量和齿顶圆切向修缘量的关系式。  相似文献   

9.
为了更深入地研究齿轮副非线性动力学现象的产生机理,提出了一种高效的齿轮副瞬态接触特性与动力学耦合分析方法。该方法考虑齿轮接触特性与系统振动之间的交互作用,将齿轮副动态承载接触分析(DLTCA)和系统动力学分析进行耦合,形成了系统“激励-响应-反馈”闭环动力学分析流程。研究发现,振动位移的反作用会改变齿面动态接触状态,影响动态啮合刚度和综合啮合误差等振动激励。在共振区附近,振动位移的增大可能会使齿面出现完全脱啮,产生响应幅值跳跃等非线性现象。增加啮合阻尼和螺旋角均会使系统非线性特性减弱直至消失。该方法可计入齿面误差、修形、齿侧间隙等多因素的影响,并通过试验进行了验证。结果表明,该方法能够更真实地模拟齿轮副动态啮合过程,可作为现有齿侧间隙非线性动力学的有效补充。  相似文献   

10.
设计了NGW型减速器,并用UG与Pro/E软件检查了装配干涉和运动干涉,提高了设计效率,符合了产品要求,为优化产品提供了技术基础。NGW型减速器的设计路线,在其配齿设计后还融入了软件的装配干涉和运动干涉检查技术,大大提高了设计效率,为优化产品提供了技术基础。  相似文献   

11.
利用MATLAB/Simulink软件建立了由磁场强度模型、电磁作用力模型、阀芯运动阻力模型以及回位弹簧作用力模型组成高速电磁阀仿真模型.分析了驱动电压、电磁力、阀芯质量和线圈匝数等参数对电磁阀动态响应特性的影响.仿真结果表明:在一定条件下增加驱动电压,采用质量小的阀芯,选取小的回位弹簧预紧量,减少线圈匝数和降低弹簧刚度,有利于加快电磁阀开启响应速度,而降低维持电压,适当减小工作气隙、增大弹簧刚度,有利于加快关闭响应速度.  相似文献   

12.
经多年研究,利用双曲柄机构中之连杆作平动的原理设计出同轴式摆动齿轮减速器,与少齿差减速器比较,省去了专门的输出机构,且工作可靠、实用。  相似文献   

13.
为了设计高性能同轴双输出行星齿轮减速器,建立了减速器装配模型及运动学、动力学分析模型,应用齿轮三维动力接触有限元分析程序计算了齿轮啮合时变刚度激励、误差激励和啮合冲击激励,对减速器进行了运动仿真分析、模态分析和动态响应分析,得出各构件的转速曲线、减速器的固有频率以及箱体表面的振动位移、振动速度和振动加速度曲线;仿真结果表明了减速器满足传动要求,在正常工作情况下不会出现减速器固有频率与传动轴转频或齿轮啮合频率合拍的现象。  相似文献   

14.
为了达到减小减速器体积同时提高承载能力、降低运转冲击的目的,基于Hertz接触理论,引用销轴和销孔外廓参数和材料参数建立两者法向接触力的数学模型;选取减速器的5个尺寸参数为设计变量,构造8个非线性约束方程,建立起优化法向接触力和减速器体积的多目标优化模型.运用评价函数法和罚函数法求解计算实例,对优化模型进行验证,对比优化前后结果表明,减速器体积和法向接触力分别得到了13.1%和24.0%的优化率;利用ADAMS对法向接触力进行动力学仿真,得到优化前后的时域和频域仿真图,结果表明其平均优化率达到29.4%,与理论结果基本吻合.  相似文献   

15.
圆柱凸轮机构的参数化造型和运动仿真   总被引:4,自引:0,他引:4  
在Pro/E中,通过Relation和Graph特征来控制截面形状从而生成精确的圆柱凸轮模型。通过定义旋转运动和直线运动的共同作用,模拟出滚轮在圆柱凸轮上的运动过程。  相似文献   

16.
克林贝格螺旋锥齿轮的建模与仿真   总被引:7,自引:0,他引:7  
在分析克林贝格螺旋锥齿轮切齿原理和基本运动的基础上,以一对齿轮副参数为例进行建模.利用AutoCAD2000中的二次开发工具VBA(Visual Basic Application)参数化建模。开发出该类齿轮的建模软件,实现克林贝格螺旋锥齿轮三维仿真.对建模软件的结果进行分析,说明利用克林贝格螺旋锥齿轮建模软件所仿真出来的图形与理论一致.对该软件的应用做了简要的介绍。  相似文献   

17.
兆瓦级风电偏航减速机行星齿轮疲劳仿真分析   总被引:1,自引:0,他引:1  
针对兆瓦级风电偏航减速机的运行工况,采用Pro/E对新型风电偏航减速机进行了虚拟装配,利用Pro/E与ANSYS之间的接口技术建立了新型风电偏航减速机行星齿轮接触模型,模拟行星齿轮运转过程中的接触应力变化.结果表明:行星齿轮初始啮合最大接触应力为395 MPa,啮合过程最大应力为460 MPa,但仍小于行星齿轮材料的屈...  相似文献   

18.
为研究两挡变速箱行星轮系传动过程中的振动特性和轮系间轮齿动态啮合力的变化规律,利用Adams动力学软件建立变速箱行星轮系机构的动力学模型。根据变速箱的工作原理,对行星轮系的动力学行为进行仿真模拟,结果表明:行星轮系输出角速度和角加速度的曲线呈明显周期性,且仿真分析和理论结果的误差为0.6%,以此证明行星轮系仿真模型的正确性。由于轮齿啮合具有一定的周期性致使轮系振动也具有周期性的特点,输出振动角加速度在理论值0°/s2上波动。太阳轮和内齿圈分别与行星轮之间的动态啮合力主频率为2倍关系,太阳轮与行星轮径向、切向啮合力存在90°的相位差,行星轮系轮齿间的接触力满足力平衡关系,与理论分析相一致。  相似文献   

19.
从几何学与运动学角度对行星弧面凸轮减速机构进行了分析与研究,根据空间机构的共轭啮合原理,采用齐次坐标变换推导了减速机构内弧面凸轮的轮廓曲面方程和压力角方程,并对机构的基本尺寸或参数选取进行了探讨,发现在满足滚子抗弯强度的前提下,采用具有较多滚子的从动盘有助于降低传动压力角和提高传动效率.行星弧面凸轮减速机构通过滚子与凸轮廓面的滚动摩擦代替传统减速机构的滑动摩擦,并且同时参与啮合传动的滚子数多,具有传动效率高、传动扭矩大等优点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号