首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
王志敏  徐翠莲  刘朝晖 《河南科学》2010,28(12):1521-1525
利用相转移反应在羧基化碳纳米管的表面引入具有反应活性的苯乙烯双键,利用双键的反应性,与MMA单体进行自由基原位聚合反应,得到PMMA修饰的碳纳米管.这种聚合物修饰的碳纳米管可以在对PMMA有溶解效力的有机溶剂中溶解,利用FTIR,TGA,TEM等对这种聚合物修饰的碳纳米管的结构、修饰效率以及在有机溶剂中的溶解和分散性能进行了表征.结果表明,通过这种方法可以实现高分子链对碳纳米管表面有效修饰.利用这种原位聚合反应,不进行均聚物的分离可以一步得到聚合物基纳米复合材料.作为比较,相同量未经任何修饰的碳纳米管用相同的方法,在相同条件下也制备了PMMA纳米复合材料,并将两个样品中碳纳米管的分散状态用扫描电镜(SEM)进行了观察,同时对其力学性能与相同条件下得到的PMMA均聚物进行了比较.  相似文献   

2.
通过反应对碳纳米管进行表面修饰,制备了聚糠醇/碳纳米管复合材料。对复合材料进行了FTIR,SEM分析,研究了不同配比复合材料对树脂砂抗拉强度的影响。结果表明:表面修饰后的碳纳米管加到聚糠醇中,聚糠醇固化后树脂砂的抗拉强度明显上升,当修饰糠醇的碳纳米管量达到0.8%,树脂砂的抗拉强度最好。  相似文献   

3.
采用化学气相沉积法(CVD)制备多壁碳纳米管(MWNTs),并用酸纯化多壁碳纳米管(MWNTs).为了改进碳纳米管在聚合物中的性能,采用化学修饰法制备了多壁碳纳米管/聚丙烯酸(MWNTs/PAA)复合材料,并用扫描电镜(SEM)、透射电镜(TEM)和红外光谱(FT-IR)对其进行了表征.实验结果表明,聚丙烯酸能均匀地包覆在碳纳米管表面,而且多壁碳纳米管/聚丙烯酸复合材料能很好地分散在水和苯丙乳液中.  相似文献   

4.
采用酞菁铁(FePc)作为碳源和催化剂源,利用化学气相沉积(CVD)法在碳纤维纸(CFP)上生长碳纳米管(CNTs),从而制备了碳纳米管/碳纤维纸复合材料,并利用扫描电镜(SEM)测试、X射线衍射(XRD)测试、接触角测试、电导率测试和孔隙率测试等方法对其结构和性能进行了表征.结果表明,碳纳米管能在碳纤维纸表面生长;表面生长碳纳米管后,碳纤维纸的疏水性、孔隙率和电导率均有所提高.  相似文献   

5.
以多壁碳纳米管及多层石墨烯作为添加剂与聚偏二氟乙烯基体复合,制备介电性能优异的纳米碳/聚合物复合材料。通过SEM,TEM,AFM,XPS,FT-IR等手段对添加剂的结构、成分及其在聚合物基体中的分散性进行了表征。对多壁碳纳米管进行羧基及酯基修饰后,提高其在聚合物基体中的分散性,复合材料的介电性能明显提高。对多层石墨烯进行强碱水热处理后,多层石墨烯表面羟基含量增加,多层石墨烯/聚偏二氟乙烯复合材料的导电阈值增加,复合材料的介电性能大大增强,表现出比碳纳米管掺杂的复合材料更加优异的介电性能。  相似文献   

6.
以多壁碳纳米管及多层石墨烯作为添加剂与聚偏二氟乙烯基体复合,制备介电性能优异的纳米碳/聚合物复合材料。通过SEM,TEM,AFM,XPS,FT-IR等手段对添加剂的结构、成分及其在聚合物基体中的分散性进行了表征。对多壁碳纳米管进行羧基及酯基修饰后,提高其在聚合物基体中的分散性,复合材料的介电性能明显提高。对多层石墨烯进行强碱水热处理后,多层石墨烯表面羟基含量增加,多层石墨烯/聚偏二氟乙烯复合材料的导电阈值增加,复合材料的介电性能大大增强,表现出比碳纳米管掺杂的复合材料更加优异的介电性能。  相似文献   

7.
 采用硝酸氧化法制备氧化多壁碳纳米管(MWNTs-COOH),在其表面引入羧基.以对甲苯磺酸(PTSA)为催化剂、二甲亚砜(DMSO)为溶剂,采用羟丙基-β-环糊精(HP-β-CD)修饰MWNTs-COOH,制备了分散性较好的羟丙基-β-环糊精-多壁碳纳米管 (HP-β-CD-g-MWNTs)复合材料.经透射电镜(TEM)、傅里叶变换红外光谱(FT-IR)、热重分析(TGA)等测试后表明,HP-β-CD被成功接枝到多壁碳纳米管(MWNTs)表面.分散性研究结果表明,HP-β-CD-g-MWNTs复合材料在水溶液中的分散能力达到2.3mg/mL,这一属性使得该材料有望成为医学材料或药物载体材料.采用紫外-可见(UV-Vis)吸收光谱法研究扁桃酸与HP-β-CD-g-MWNTs复合材料的相互作用,结果表明扁桃酸可能通过π-π堆积、极性相互作用及氢键吸附在复合材料表面.基于上述分子间作用力的形成,与碳纳米管作用的分子可望实现从碳纳米管表面得到控制释放或缓释.  相似文献   

8.
针对碳纳米管水泥基复合材料中碳纳米管与水泥基体界面结合弱的技术问题,以聚乙烯醇和聚丙烯酰胺分别作为界面桥连剂,探究桥连剂通过强化碳纳米管与水泥基体间的界面对碳纳米管水泥基复合材料力学性能的增强效果;利用阿拉伯树胶作为碳纳米管的水性分散剂,采用普通和表面带有羧基的2种碳纳米管制备5组不同碳纳米管掺量的水泥基复合材料,对其进行了不同龄期的抗压、抗折强度测试,并利用扫描电子显微镜(SEM)在断口处对碳纳米管与水泥基体界面区进行了微结构分析。结果表明:采用羧基碳纳米管并掺入桥连剂的水泥基复合材料力学强度得到最大提升,相较于配合比相同但未加入碳纳米管的基准组,加入桥连剂的羧基碳纳米管水泥基复合材料28 d抗折、抗压强度分别提升了47.4%和22.7%,仅加入羧基碳纳米管的水泥基复合材料则提高了15.4%和8.84%;SEM测试发现加入桥连剂的碳纳米管水泥基复合材料破坏断口处碳纳米管与水泥基体连接处结构密实,未加入桥连剂试件断口处碳纳米管被完全拔出,说明桥连剂改善了碳纳米管与水泥基体间界面结合,使二者近似成为一个整体进行受力,增强了碳纳米管的拔出效应,水泥基体断裂时碳纳米管拔出吸收了更多的破坏能,显著改善了水泥基复合材料的宏观力学性能。  相似文献   

9.
碳纳米管(carbon nanotube)自1991年被S Iijima发现以来,因其具有独特的结构和优异的力学性能而被视为理想的高强度纤维材料,常用作填料添加到聚合物基体中来制作超强复合材料.碳纳米管与聚合物间的界面结合问题是影响复合材料的机械性能的一个非常重要的问题.大量研究表明,较大的界面结合能和聚合物在碳纳米管表面有序缠绕的构象(形态)对提高复合材料的机械性能非常重要.然而在对此界面结合问题的研究中聚合物单体间的键接方式和链段的构象因素尚没有被考虑,因此本文的研究重点考虑这两个因素.论文首先构建了(10,10)单壁碳纳米管模型.接着选择了五种聚合物:聚乙烯、聚丙烯、聚苯乙烯、聚苯乙炔和聚对苯乙炔,对每种聚合物,构建了许多具有不同键接方式和构象的典型结构模型.最后把每个具有不同键接方式和不同构象的聚合物模型和碳纳米管模型组成模拟系统.并对每个系统进行足够长时间的分子动力学模拟,计算出各个聚合物和碳纳米管的相互作用能曲线,对于聚苯乙炔和聚对苯乙炔还计算了界面结合能,结合观察相互作用图像来进行所有的研究.对模拟和计算结果的分析显示在400K时就聚合物在单壁碳纳米管表面的吸附形态而言,聚乙烯倾向于取伸展的形态...  相似文献   

10.
碳纳米管金属复合材料的合成及其吸波性能   总被引:1,自引:0,他引:1  
通过乙炔催化裂解制得碳纳米管,采用浓硫酸和双氧水的混合溶液对碳纳米管进行表面羟基化修饰,利用化学镀使Pd、Co以及FePt金属纳米粒子成功地吸附在碳管表面,结果发现碳纳米管及其复合物均为介电损耗型介质,Co-碳纳米管复合物相比纯碳纳米管在高频区域有较强的宽范围吸收.  相似文献   

11.
以自组装方式,将多壁碳纳米管、聚酰胺-胺和辣根过氧化物酶修饰到玻碳电极表面,构建了H2O2生物传感器.研究了影响传感器工作性能的因素,确定了最佳分析条件,即pH值6.8的PBS缓冲溶液,工作电位为-0.15 V.在最佳工作条件下,电极对H2O2快速响应(响应时间<1 s),在9×10-7~1×10-4mol/L范围内,电极的电流响应值与H2O2浓度呈现良好的线性关系,线性回归方程为i(μA)=20.76 C(mmol/L)+0.223 0,R=0.999 0,检出限为5.0×10-7mol/L,电极的电流响应灵敏度为0.247 A mol-1.cm-2.电极应用于食用油脂中过氧化物测定,结果与碘量法一致.  相似文献   

12.
以添加Na2CO3和NH3.H2O为络合剂的微波多元醇法制备碳纳米管载Pd催化剂(Pd/MWCNTs),并考察了络合剂对催化剂甲酸电催化氧化性能的影响。结果表明,NH3.H2O络合剂制备的Pd/MWCNTs催化剂,其Pd晶粒平均粒径最小(5.2 nm),对甲酸氧化的催化活性和稳定性最好。NH3.H2O与PdCl2能形成络合物,可能会促进微波合成中碳纳米管上形成均匀分散且较小粒径的Pd粒子,因此提高了催化剂的甲酸氧化催化性能。  相似文献   

13.
利用物理吸附的方法将微过氧化物酶-11(MP-11)固定在多壁碳纳米管(MCNT)修饰的玻碳电极表面。研究发现:在pH=7.12磷酸盐缓冲溶液中,修饰电极上的MP-11发生了两电子一质子准可逆的氧化还原反应,式量电位E0’为-298mV(vs Ag/AgCl),峰电位差ΔEP为39mV。在该修饰电极上MP-11对氧气(O2)和过氧化氢(H2O2)都能进行催化还原,催化还原过程都是扩散控制的过程。而且在信噪比为3时,MP-11对H2O2的最低检出限是0.35mmol/L,表明MP-11在修饰电极上保持了自身的生物活性,该修饰电极有望在生物燃料电池和生物传感器中得到应用。  相似文献   

14.
The polyaniline coated multi-walled carbon nanotubes (PANI/CNTs) composites were synthesized by in situ polymerization. The microstructure and component of the composites were characterized by scanning electron microscope (SEM), Fourier transfer infrared spectroscopy (FTIR), X-ray diffraction (XRD), and N2 adsorption BET. The electrochemical performances of the samples were tested by cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge. The results showed...  相似文献   

15.
Polyacrylonitrile(PAN)/multi-walled carbon nanotubes(MWNTs)nanocomposites were prepared by an in-situ polymerization method and the fibers from these composites were obtained by a wet-spinning process.The orientation behavior of MWNTs in the PAN fibers was investigated by X-ray diffraction and sound velocity methods.The dispersion and the alignment of the nanotubes were also studied by scanning electron microscopy.  相似文献   

16.
采用金纳米棒(AuNRs)/多壁碳纳米管-壳聚糖(MWCNTs-Chit)复合膜促进肌红蛋白在电极上的直接电子转移,并用于构建H2O2生物传感器.首先将金纳米棒固定到玻碳电极表面,然后把MWCNTs-Chit分散溶液和肌红蛋白(Mb)固载到玻碳电极上,得到MWCNTs-Chit/Mb/AuNRs复合膜电极.通过循环伏安法对膜电极进行表征,在pH=7.0磷酸缓冲溶液中,Mb表现出一对峰形良好且可逆的氧化还原峰,其中氧化峰和还原峰电位分别为-0.291 V、-0.235 V,式电位(Eθ’)为-0.263 V.与此同时还探讨了修饰电极的电催化活性,结果表明其对H2O2具有良好的电催化还原作用,可作为检测H2O2的生物传感器.传感器对H2O2的米氏常数为0.0494 mM,线性范围为5.0×10-5~5.0×10-3M(R=0.986 7,n=10),检测限为3.2×10-6M(信噪比为3).  相似文献   

17.
以多壁碳纳米管(MWNTs)和疏水性离子液体1-丁基-3-甲基咪唑六氟磷酸盐(BMIMPF6)按一定比例制备成胶体,修饰在电极表面制备成MWNTs-BMIMPF6/GCE修饰电极,以铁氰化钾为电化学探针,用循环伏安法和交流阻抗法对修饰电极进行表征,考察鸟嘌呤在修饰电极上的电催化行为。结果表明,该修饰电极显著的增强了对鸟嘌呤的电催化性能,氧化峰电位负移,峰电流提高约7~8倍;以差分脉冲伏安法对溶液中的鸟嘌呤进行测定,其检测线性范围为1.5×10-6~2×10-4mol/L,检出限为2×10-7mol/L。  相似文献   

18.
We have investigated the very initial deposition stages of chemical vapor deposition (CVD) with ferrocene (Fe(CsH5)2) and xylene (C8H10) for growing carbon nanotubes, and made clear that the mechanism for the self-organization behaviors of nanotubes at different growth stages by this approach. For instance, the organization of nanotubes into flower-like structures at prolonged deposition is developed from the crystal-like structures formed at early growth stages, both of which are closely related to and determined by the very initial deposition stages of this CVD approach. Based on this approach, ways have been established to build up different architectures of carbon nanotubes, by controlling the initial deposition stages of the CVD process, with which we have realized the selective growth of self-organized carbon nanotube structures. This study provides a new idea for growing carbon nanotube architectures by CVD.  相似文献   

19.
Cobalt ferrite nanoparticles (CFNPs) were prepared via a reverse micelle method. The CFNPs were subsequently coated with carbon shells by means of thermal chemical vapor deposition (TCVD). In this process, acetylene gas (C2H2) was used as a carbon source and the coating was carried out for 1, 2, or 3 h at 750°C. The Ar/C2H2 ratio was 10:1. Heating during the TCVD process resulted in a NP core size that approached 30 nm; the thickness of the shell was less than 10 nm. The composition, structure, and morphology of the fabricated composites were characterized using X-ray diffraction, simultaneous thermal analysis, transmission electron microscopy, high-resolution transmission electron microscopy, and selected-area diffraction. A vibrating sample magnetometer was used to survey the samples’ magnetic properties. The deposited carbon shell substantially affected the growth and magnetic properties of the CFNPs. Micro-Raman spectroscopy was used to study the carbon coating and revealed that the deposited carbon comprised graphite, multiwalled carbon nanotubes, and diamond- like carbon. With an increase in coating time, the intensity ratio between the amorphous and ordered peaks in the Raman spectra decreased, which indicated an increase in crystallite size.  相似文献   

20.
热处理对多壁碳纳米管储氢性能的影响   总被引:1,自引:0,他引:1  
文章采用容量法测量在常温下压力升高到10 MPa时,多壁碳纳米管的吸附储氢性能,分析了热处理对碳纳米管的结构和吸附储氢量的影响。采用透射电镜(TEM)、激光拉曼光谱(Raman)和低温N2吸附(BET)对碳纳米管的微观结构进行表征。结果发现,热处理能明显地提高碳纳米管的石墨化程度,热处理后碳纳米管的质量储氢容量从原来的1.90%升高到2.17%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号