首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
峡江地区部分青铜器的成分与金相研究   总被引:2,自引:0,他引:2  
通过对峡江地区129件青铜器的金相组织与成分分析,初步了解峡江地区战国中晚期至秦汉青铜技术水平。所分析129件青铜器均为锡青铜和铅锡青铜,93%是铸造组织,有6件为热锻组织,3件是热锻后又经过冷加工。有1件是青铜淬火组织。从成分含量、金相组织整体审视这批样品,兵器与工具代表了当时巴地乃至峡江流域的青铜工艺技术的较高水平。技术分析结合型制研究,初步判断峡江出土青铜器以本地制作为主,少量属于外来的。该地区青铜制作技术受到外来文化的影响,但与周边不同步的自身发展仍是该区域的主流。  相似文献   

2.
广西兴业县高岭古代遗址冶炼技术初步研究   总被引:4,自引:0,他引:4  
高岭古代冶炼遗址位于广西兴业县龙安镇腾冲村高岭山腰处,面积约2000m2.作者于2006年、2008年和2011年秋季进行多次田野调查和取样.本研究采用金相、矿相、扫描电镜及能谱分析(SEM-EDS)等研究手段,对兴业高岭冶炼遗址的六个炉渣冶金遗物样品进行了成分和显微组织检测分析;采用加速器质谱(AMS)碳14断代方法对一份木炭样品进行碳14检测.结果表明,该遗址为炼铁遗址,采用生铁冶炼技术,炼铁渣属锰硅铝系高锰炉渣,炉渣基体以玻璃态为主;该遗址至迟于公元875±35(唐末)开始炼铁.  相似文献   

3.
为考查铜导线二次短路熔珠受火灾作用后金相组织的变化规律,本文对二次短路熔珠在不同温度加热,然后采取自然和喷水方式冷却。通过对观察熔珠的金相组织,找出受热温度对二次短路熔珠金相组织的影响。结果显示,二次短路熔珠的金相组织随着火场温度的增高逐渐由粗大柱状晶成长为等轴晶。实验结果表明,在实际火灾调查中,应根据火灾现场的实际情况综合分析熔珠的金相组织特征,再以此为依据来认定熔珠的种类。  相似文献   

4.
学者们普遍认为,表面纳米化技术和低温渗氮技术是目前在纳米材料领域较有实用前景的技术之一.表面纳米化即利用各种物理或化学方法将材料的表层晶粒细化至纳米量级,制备出具有纳米结构的表层,但是基体仍然保持原有的粗晶状态,借以改善和提高材料的表面性能,如疲劳强度、抗蚀性和耐磨性等.  相似文献   

5.
西蒙栋的技术物体评析   总被引:2,自引:0,他引:2  
技术物体是技术样品的进化谱系.由于技术样品存在结构和功能两个交错的进化谱系,西蒙栋转而借助生物有机体的进化谱系进行类比.在讨论技术物体进化动力时,西蒙栋隐喻性地提出技术物体是由纯粹的客观结构元素构成的.修正后的技术物体包含两个元素,技术的内在客观性结构元素和从外界移入的主体意向性元素.  相似文献   

6.
该集成技术涵盖了先进的选矿废水回用技术、尾矿有价元素清洁综合回收及减排技术等。应用该集成技术,在安全高效、低污染、低成本、节能减排前提下,在全面回收有价元素的同时,最终实现了选矿废水、尾矿、硫酸渣和废石的无外排和资源循环综合利用。该技术在国内属首创。  相似文献   

7.
1.灌水保温.灌水能增加土壤的热容量,防止地温继续下降.同时,灌水后可稳定近地表层的大气温度,使气温平稳回升,有利于受冻组织的恢复,从而减轻危害.  相似文献   

8.
在我国传统的计划经济时期,不论是科技创新、商业模式和组织管理创新都缺少市场化的基本元素,但是在工业化的有序演进下,我国科技创新仍然取得了巨大的成就,这一方面是工业化客观推进了以企业为主体的技术创新和组织管理体制的转变;另一方面,作为一个依托制造业崛起的大国我国吸收了许多国际创新的经验并广泛开展国际贸易,在这两个条件下,我国比较好地实现了技术转移的目标.本文阐述的是国际贸易条件下国际贸易生命周期与技术转移、技术转移与国家创新体系的关系.  相似文献   

9.
本文介绍了一种无人值守的、适合于布放在近海、能实时连续的监测海洋气象环境数据、具备遥控功能的小型浮标测量系统.该浮标系统能够监测风速、风向、气温、湿度、气压等气象要素和波高、波周期、表层海水流速及流向、表层海水温度和盐度等海洋环境要素等,浮标可通过多种通信方式传输数据,是我国浮标监测网络的重要组成部分.  相似文献   

10.
一、主要技术内容 PVC-U芯层发泡复合管材由芯层和表层两种配方三层共挤而成.其内外表层由PVC树脂添加剂和改性剂加工而成,芯层为0.79~0.9g/cm3比重的极细小的闭孔组成的PVC发泡层,通过PVC内外皮层和发泡层各自特性的有机结合改变了管材的力学结构,使其产品具有如下特性:  相似文献   

11.
古代金属中的合金元素--铜、锡、铅、砷、锑等的数值大小和变化常被用来标识合金化水平和冶炼工艺以揭示技术进步的过程.然而,这些合金元素的含量在特殊情况下会高到超出普通铜合金的正常值或在金属表面富集,技术本身很难清楚地解释这类现象.文章通过系统总结、比较、分析了世界各地有关锡、铅、砷、锑等合金元素在金属中出现的特别用意,试图从视觉效果--对颜色追求的角度来理解有关合金和表面处理技术产生的意识形态因素.  相似文献   

12.
凯文·凯利是"互联网时代的精神教父",同时也是技术哲学家,他通过其技术三部曲系统阐述了其乐观主义技术自主论思想。他认为,技术是人类生存的重要组成部分,是自然界六大元素之后的第七元素,是人和自然共同构建的人生环境。凯文·凯利对技术的自主性进行了详细的状态描述,对技术自主性的机理做了深入的分析,并提出了人与技术共同进退的协同之道。凯文·凯利认为,技术元素能够自我决定、自我发展,表现出其自主特性,并且通过具身性、自组织性、同步性和进步性来实现。虽然技术具有自主性,但他认为人可以通过对多样性技术的选择来实现人与技术的共同进退、协同发展,因此人类仍然具有自由和主动。他是一位继承了传统技术自主论遗产,又有时代创新的后技术自主论者。  相似文献   

13.
《中国科技术语》2004,6(2):10-10
全国科学技术名词审定委员会化学名词审定分委员会,根据国际纯粹与应用化学联合会(IUPAC)2003年8月16日对第110号元素正式确定的英文名称,于2003年12月组织无机化学名词组和放射化学名词组及有关专家讨论了110号元素的中文名称的定名问题并提出建议,后在有关期刊上广泛征求意见,在此基础上审定了110号元素的中文名称.其定名使用的汉字已征得国家语言文字工作委员会的同意,现经全国科学技术名词审定委员会批准予以公布使用.  相似文献   

14.
技术嵌入与制度吸纳:提高政府技术治理绩效的运作逻辑   总被引:2,自引:0,他引:2  
目前学界对技术治理研究的框架主要有技术赋权与技术监管、技术生产与技术约束.然而这两种研究视角都将技术治理的治理结构作为主要研究对象,而没有涉及更深层次的从技术治理的制度层面展开研究.基于此,本研究从反思当前我国技术治理绩效提高仍停留于表层的技术手段升级改造,忽略了制度支持在技术治理中的重要作用的事实出发,进而提出一种新...  相似文献   

15.
我支持保留"原子量"、"分子量"这一既方便又实用的术语.理由如下: 1. 原子量与相对原子质量各有不同的内涵或不同的定义.某元素的原子量定义为"该元素所有稳定同位素的相对原子质量的加权平均值".  相似文献   

16.
(二)以金旁命名的元素111个元素中具有金属性质的较多,因而以金旁命名的元素占相当大的比例。元素汉文名的造字方法一般采用左右结构左形右声的合体字,少量的名称也采用左、中、右结构的合体字,如:、锕、、铷。这些字均属于形旁和声旁组合而成的形声字。后期发现的新元素,大体上按照这样的规律造新字。(1)来源于希腊文的元素名称锂:3号元素,符号Li。1817年瑞典青年阿尔费特森(J.A.Arfvedson)在分析透锂长石(petalite)时发现了一种新的金属元素(锂),贝齐里乌斯把这种新金属元素命名为lithium,源自希腊语lithos(石头),英文和拉丁文均采用了lithium这一名称。铬:24号元素,符号Cr。1798年法国化学家沃克兰(L.N.Vauquelin)将他从红色西伯利亚矿石中得到的一种新金属元素(铬)命名为chrom,源自希腊文chroma(颜色)。铬的英文和拉丁文均采用了chromium这一名称。我国曾音译为“克罗米”。钼:42号元素,符号Mo。1782年瑞典人埃尔摩(P.J.Hjelm)从天然辉钼矿中分离出金属钼,命名为molybdenum,源自希腊文molybdos(原义是“铅”)。钼的英文名为molybdenum,拉丁文名为molybdnium。锝:43号元素,符号Tc。第一个人造放射性元素。1937年意大利物理学家谢格尔(E.G.Segre)在回旋加速器里用氘核照射钼,获得了一种新的金属元素(锝),并把它命名为technetium,源于希腊文technetos(人造)。锝的英文和拉丁文均采用了technetium这一名称。该元素曾称masurium()。铑:45号元素,符号Rh。1804年,英国化学家武拉斯顿(W.H.Wollaston)在天然铂矿里发现了一种新元素(铑),并根据其化合物所呈现的玫瑰红色命名为rhodium,源于希腊文rhodon(玫瑰)。铑的英文和拉丁文均采用了rhodium这一名称。:49号元素,符号In。1863年,德国物理学教授赖赫(F.Reich)在分析锌矿石时得到一种草黄色的沉淀物,他认为是一种新的金属元素的硫化物,李希特(H.T.Richter)后来在光谱分析中发现一条靛蓝色谱线,因而命名为indium(),源于希腊文indikon(靛蓝)。的英文和拉丁文均采用了indium这一名称。钡:56号元素,符号Ba。1808年英国化学家戴维用电解重晶石的方法制得钡,并将其命名为barium,源于希腊文barys(重晶石)。钡的英文名为barium,拉丁文名为baryum。镧:57号元素,符号La。1839年瑞典化学家莫桑德尔(C.G.Mosander)在研究分析硝酸铈时,发现了一种新的元素(镧),命名为lanthanum,源于希腊文lanthanō(隐藏),意思是隐藏在稀土中。其英文和拉丁文均采用了这一名称。镨:59号元素,符号Pr。1885年奥地利化学家威斯巴赫(A.Weisbach)从氧化(氧化是一种混合物)中,发现一种新的元素(镨),其盐为绿色,命名为praseodymium,源于希腊文pratos(葱绿)和didymos(孪晶),意思是指的绿色孪晶。镨的英文和拉丁文均采用了这一名称。钕:60号元素,符号Nd。1885年威斯巴赫在发现镨的同时,发现另一个新元素(钕),其盐为玫瑰红色,命名为neodymium,源自希腊文neon(新的)+didymos(孪晶),意思是新的孪晶。钕的英文和拉丁文均采用了这一名称。镝:66号元素,符号Dy。1886年法国化学家布瓦邦德朗(P.E.L.de Boisbaudran)发现了该元素,并命名为dysprosium,源自希腊文dysprositos(难以取得)。镝的英文和拉丁文均采用了这一名称。锇:76号元素,符号Os。1804年法国科学家泰纳尔在分析铂系矿石时发现该元素,并命名为osmium,源自希腊文osme(臭味),因其化合物带有臭味而得名。饿的英文和拉丁文均采用了这一名称。铱:77号元素,符号Ir。1804年法国科学家泰纳尔在分析铂系矿石时,该元素同时被发现,并命名为iridium,源自希腊文iris(虹),因其化合物沉淀呈多种颜色而得名。铱的英文和拉丁文均采用了这一名称。铊:81号元素,符号Tl。1861年英国化学家克鲁克斯(W.Crookes)在用分光镜分析硫酸厂的烟道灰时发现光谱的绿色区有一条新谱线,他断定是一种新的元素(铊),并将其命名为thallium,源于希腊文thallos(绿色嫩枝)。其英文和拉丁文均采用了这一名称。锕:89号元素,符号Ac。1899年法国化学教授德比尔恩(A.L.Debierne)从稀土残渣中发现了该元素并命名为actinium,源于希腊文aktis(放射),因其具有放射性而得名。锕的英文和拉丁文均采用了这一名称。镤:91号元素,符号Pa。1917年德国放射化学家、物理化学家哈恩(O.Hahn)和瑞典女物理学家梅特纳(L.Meitner)从沥青铀矿石中发现了一种新的放射性元素(镤),并命名为protactinium。这个名称由希腊文protos(起源)和actinium(锕)缀合而成。镤的英文和拉丁文均采用了这一名称。(2)来源于拉丁文的元素名称铝:13号元素,符号Al。1808年前后英国化学家戴维和瑞典化学家贝齐里乌斯都曾想用电流法从矾土(氧化铝)中分离出金属铝,但没有成功。而贝齐里乌斯却给这个未取得的金属取了个名字叫alumien,源自拉丁文alumen(有收敛性的矾)。铝的英文名和拉丁文名aluminium正是由此而来。钙:20号元素,符号Ca。1808年戴维用电解生石灰和氧化汞的方法制得钙汞合金再经蒸馏得到金属钙,并将其命名为calcium,源自拉丁文calx(生石灰)。钙的英文和拉丁文均采用了这一名称。铷:37号元素,符号Rb。1861年德国科学家本生(R.W.Bunsen)和克希荷夫(G.R.Kirchhoff)在鳞云母矿物中发现了一种新的元素(铷)并命名为rubidium,源自拉丁文rubius(深红色),因在分光镜下铷是明亮的深红线。铷的英文和拉丁文均采用了这一名称。铯:55号元素,符号Cs。1860年本生和克希荷夫利用分光镜分析杜克海姆(Dürkheim)矿泉水时发现了铯并命名为caesium,源自拉丁文caesius(天蓝色),因铯的光谱线为蓝色。铯的英文和拉丁文均采用了这一名称。镭:88号元素,符号Ra。1898年法国科学家居里(Curie)夫妇和贝蒙合作从沥青铀矿中发现了镭,并命名为radium,源自拉丁文radius(射线)。镭的英文和拉丁文均采用了这一名称。(3)以星球命名的元素名称钯:46号元素,符号Pd。1804年英国化学家武拉斯顿宣布从铂矿中发现一种新的元素(钯),并命名为palladium,源自于小行星Pallas(武女星),该行星以希腊神话中司智慧的女神巴拉斯(Pallas)得名。钯的英文和拉丁文均采用了这一名称。铈:58号元素,符号Ce。1803年瑞典化学家贝齐里乌斯和希辛格(W.Hisinger)在红色重石中发现了一种新的元素氧化物ceria(铈土),新元素命名为cerium,源自小行星ceres(谷神星),该行星以罗马神话中司谷类的女神得名。铈的英文和拉丁文均采用了这一名称。铀:92号元素,符号U。1786年德国化学家克拉普罗特在分析沥青铀矿时发现了一种未知金属元素(铀),并以1781年发现的天王星(Uranus)将其命名为uranium,该行星以希腊神话人物得名。铀的英文和拉丁文均采用了这一名称。镎:93号元素,符号Np。1939年美国物理学家麦克米伦(E.M.McMillan)和化学家艾贝尔生(P.Abelson)在分析铀裂变产物中发现了一种新的元素(镎),并把它命名为neptunium,源自行星Neptune(海王星),该行星以罗马神话的海神得名。镎的英文和拉丁文均采用了这一名称。钚:94号元素,符号Pu。1942年麦克米伦和艾贝尔生在分析铀裂变产物时又发现了一种新的元素(钚),并把它命名为plutonium,源于Pluto(冥王星),因为太阳系中海王星的外面是冥王星,故94号元素名称也由93号元素而来。钚的英文和拉丁文均采用了plutonium这一名称。(4)以神话人物命名的元素名称钛:22号元素,符号Ti。1795年克拉普罗特分析了匈牙利布伊尼克(Boinik)地区出产的金红石,得到一种新的氧化物,并把其中金属(钛)命名为titanium,源于希腊神话中Titans(太旦神族)。钛的英文和拉丁文均采用了这一名称。钒:23号元素,符号V。1830年,瑞典化学家塞夫斯唐摩(N.G.Sefstrm)在分析瑞典塔堡(Taberg)出产的白铁矿时发现了一种新的金属元素(钒),并把它命名为vanadium,源自斯堪的纳维亚半岛上传说的女神Vanadis(凡娜迪丝)。钒的英文和拉丁文均采用了这一名称。铌:41号元素,符号Nb。1844年德国化学家H.罗斯(H.Rose)从波登马伊斯(Bodenmais)地方出产的矿石中分离出两种性质相似的元素化合物,一个是已发现的元素钽,另一个是一种新的元素(铌),他命名为niobium,源自希腊文Niobe(希腊神话中坦塔罗斯的女儿尼奥婢的名字)。1949年国际纯粹与应用化学联合会(IUPAC)推荐这一名称,铌的英文和拉丁文均采用了niobium这一名称。在此之前美国一直采用columbium(钶)。镉:48号元素,符号Cd。1817年德国化学和医学教授革丁根(Gttinger)发现一种新的元素(镉),并将其命名为cadmium,源自calamine(菱锌矿),因镉存在于锌矿中而得名,希腊文是cadmein,似与希腊神话人物cadmus有关。镉的英文和拉丁文均采用了cadmium这一名称。钷:61号元素,符号Pm。人造放射性元素。1947年由美国田纳西州克林顿实验室发现,并被命名为promethium,源于希腊神话中的英雄Prometheus(普罗米修斯)。1949年IUPAC接受了这一名称。钷的英文和拉丁文均为promethium。该元素曾称“”(illinium)。钽:73号元素,符号Ta,读音为“坦”。1802年瑞典化学家埃克柏格(A.G.Ekeberg)宣布,他从芬兰基米托(Kimito)地方出产的一种矿石中分离出一种新的金属元素(钽),并命名为tantalum,源自希腊神话中的英雄Tantalus(坦塔罗斯),意为能抵抗多种酸的侵蚀,具有英雄的本色。钽的英文和拉丁文名均采用了这一名称。钍:90号元素,符号Th。1815年贝齐里乌斯分析瑞典法龙(Fahlum)地方出产的一种矿石时发现了一种新的元素(钍),并将它命名为thorium,源于北欧神话中的雷神(Thor)。钍的英文和拉丁文均采用了这一名称。(5)以科学家人名命名的元素名称钐:62号元素,符号Sm。1879年法国化学家布瓦邦德朗从decipium(指稀土元素的混合物)中用光谱分析法分离出62号元素,并命名为samarium,源自褐钇铌矿的另一名称萨马尔斯克矿(sa marsite),以纪念俄国矿物学家萨马尔斯基(B.E.Самарский)。钐的英文和拉丁文均采用了这一名称,汉文名称取其第一音节的谐音。钆:64号元素,符号Gd。1880年瑞士化学家马里尼亚克(J.C.G.de Marignac)在分析萨马尔斯克矿石时发现了一种新的元素(钆),将它命名为gadolinium,用以纪念芬兰矿物学家加多林(J.Gadolin);钆的英文和拉丁文均采用了这一名称。汉文名称曾用“錷”,后因笔画太多,改为“钆”。锔:96号元素,符号Cm。人造放射性元素。1944年底美国核物理学家、化学家西博格(G.T. Seaborg)和他的同事们用高能量α粒子轰击钚-239,得到96号元素并将其命名为curium,以纪念居里夫妇在物质放射性研究中作出的贡献。该元素英文和拉丁文均采用了这一名称。汉文名称用“锯”最合适,但为了与常用字“锯”区分,故选用“锔”。锿:99号元素,符号Es。人造放射性元素。1952年美国科学家西博格和吉奥索(A.Ghiorso)在热核反应放射性碎渣中发现锿元素,并将其命名为einsteinium(符号E),以纪念物理学家爱因斯坦。1957年IUPAC将其符号改为Es。锿的英文和拉丁文名称均为einsteinium。汉文名称用“”字更符合定名原则,但为何最后使用“锿”?在定名选字时曾提出“”“銰”“”备选,讨论认为“”已被钍的一个天然放射性同位素ionium命名所用,而“銰”与85号元素“砹”形似音同,易引起误解,“”字与有机化合物“蒽”同音,最后选用“锿”字也是无奈之举,以求与“爱”字音近吧。镄:100号元素,符号Fm。人造放射性元素。1952年西博格和吉奥索在热核反应放射性碎渣中发现镄元素,并将其命名为fermium,以纪念意大利裔美国物理学家费米(Enrico Fermi)。镄的英文和拉丁文均采用了这一名称。汉文定名为“镄”是比较恰当的。钔:101号元素,符号Md。人造放射性元素。1955年西博格等用α粒子轰击铀-235获得了101号元素,命名为mendelevium,以纪念俄国化学家门捷列夫。该元素的英文和拉丁文均采用了这一名称。汉文名称用“钔”来命名也是恰当的。锘:102号元素,符号No。人造放射性元素。1957年由瑞典诺贝尔物理研究所用碳-13离子轰击锔-244得到102号元素,1957年秋末为苏联物理家费列罗夫等人所证实。该元素被命名为nobelium,以纪念瑞典化学家诺贝尔(A.Nobel)。其英文和拉丁文均采用了这一名称。汉文名称用“钅”取代“讠”旁比较清晰地表达了对诺贝尔的纪念。铹:103号元素,符号Lr。人造放射性元素。由美国科学家吉奥索等几位科学家1961年用硼-10和硼-11的原子核轰击锎-250和锎-249得到103号元素,并将其命名为lawrencium,以纪念美国核物理学家劳伦斯(E.O.Lawrence)。该元素的英文和拉丁文均采用了这一名称。汉文名称用“铹”定名103号元素非常谐音。:104号元素,符号Rf。人造放射性元素。1964年底苏联科学家宣布获得了104号元素,并把这个元素命名为kurchatovium,符号Ku,以纪念苏联科学家库尔查托夫(I.V.Kurchatov),1969至1970年间,美国科学家也获得了104号元素的另一些同位素,并把104号元素命名为rutherfordium,以纪念英籍新西兰物理学家欧内斯特·卢瑟福(E. Rutherford)。IUPAC采纳了美国科学家的建议,该元素的英文和拉丁文均采用了这一名称。汉语用“”表示104号元素名称并无争议。:106号元素,符号Sg。人造放射性元素。1974年美国科学家吉奥索等宣布获得106号元素。美国化学命名委员会提议以美国核物理学家、化学家、诺贝尔化学奖获得者西博格的姓氏命名该元素,称为seaborgium,得到IUPAC的推荐。该元素的英文和拉丁文均采用了这一名称。汉语采用“”字(读xǐ)命名,是为避免与34号元素“硒”和50号元素“锡”同音。:107号元素,符号Bh。人造放射性元素。1976年苏联科学家用冷熔法获得,该元素曾命名为nielsbohrium,以纪念丹麦科学家尼尔斯·玻尔(N.Bohr)。1997年8月IUPAC将其改之bahri um(符号Bh),英文和拉丁文均采用了这一名称。汉语用“”字最为恰当,但考虑到汉字没有“王”字在中间的左中右结构字,而“”的字形简单符合造字法,故选用“”为其中文名称。:109号元素,符号Mt。人造放射性元素。1984年由德国达姆施塔特城(Da mstadt)重离子研究实验室物理学家们用铁离子照射铋获得了109号元素。1997年8月IUPAC将其命名为meitnerium,以纪念女物理学家梅特纳。该元素的英文和拉丁文均采用了这一名称。中文定名为“”以谐其音。:111号元素,符号Rg。人造放射性元素。1994年12月德国物理学家阿姆布鲁斯特(P.Arm bruster)宣布获得该元素。2004年IUPAC颁布了第111号元素的名称roentgenium和元素符号Rg。这是为纪念X射线发现人德国科学家伦琴(W.K. Rntgen)命名的。2005年全国科学技术名词审定委员会召开了有化学、物理学和语言学专家参加的座谈会,对其中文定名进行讨论,会上达成一致共识,第111号元素中文定名为“”。在征得国家语委同意后,“”于2007年3月经全国科学技术名词审定委员会批准予以公布使用。(6)以其他文种来源命名的元素名称铍:4号元素,符号Be。1798年,法国化学家沃克兰(L.N.Vaaquelin),在对绿柱石和祖母绿进行化学分析时发现了铍。但是单质的铍在1828年才由德国化学家维勒(F.Woler)获得。铍最早被称为glucinium,来源于希腊文glykys(甜),因为铍的盐类有甜味。但由于钇的盐类也有甜味,维勒把这一名称改为beryllium,源自于英文beryl(绿柱石)。英文和拉丁文均采用了这一名称。钠:11号元素,符号Na。1807年,英国化学家戴维从电解碳酸钠中获得金属钠,并将其命名为natrium,源自于natrum(阿拉伯文中的天然碱)。英文名为sodium,拉丁文名为natrium。钴:27号元素,符号Co。中世纪在欧洲含钴的蓝色辉钴矿中含有砷,影响了采矿工人的健康,故被称为kobalt,这一词在德文中原意为“妖魔”。而这一词正是今天钴的拉丁文名称cobaltum和英文名称cobalt的来源。镍:28号元素,符号Ni。中国三国时代的《广雅》一书中有“白铜谓之鋈”,这里的白铜指的就是镍。17世纪末欧洲镍砒(砷)矿里对镍称“假铜”(kupfernickel)。1751年瑞典化学家克隆斯泰特(A.F.Cronstedt)在研究报告中指出这种矿中所含的不是铜而是一种新发现的金属,并命名为nickel,源于德文(骗人的小鬼)。镍的英文名为nickel,拉丁文名为niccolum。锶:38号元素,符号Sr。1808年英国化学家戴维利用电解法从碳酸锶中分离出金属锶。并命名为strontium。这是根据英国苏格兰思特朗蒂安(strontian)地方的一种含锶的矿石命名的,锶的英文和拉丁文均采用了这一名称。锆:40号元素,符号Zr。1789年德国化学家克拉普罗特在锆石中发现锆的氧化物,并根据其一种锆的矿物名称命名为zirconerde,英文和拉丁文名称zirconium就源于此词。钨:74号元素,符号W。在德国出产的一种棕黑色矿石,工人们称它为wolframite,这个词源自于德文“wolf”(狼)和“ram”(泡沫)。1783年西班牙埃尔胡耶兄弟(J.J.and F.de Elhuyar)分析了这种矿石,从中分离出一种新的金属,并将其命名为wolf-ram(黑钨矿)。拉丁文采用了这一名称,英文名称为tungsten,源自于白钨矿(tungsten)。铂:78号元素,符号Pt。1748年西班牙乌罗阿(A.de Urbain)参加了法国一支南美洲科学考察队,在哥伦比亚艾尔乔考(El Chocò)地方发现了一种金属矿石叫platina,是西班牙文plata(银)的俚语,这个词成为目前拉丁文和英文名称platinum的来源。(7)以地名命名的元素名称下面元素以地名命名,读者可参阅周定国先生在《科技术语研究》2005年第1期发表的《以地名命名的元素名称浅谈》一文。镅(Am)、锫(Bk)、锎(Cf)、铜(Cu)、(Ds)、铕(Eu)、钫(Fr)、镓(Ga)、锗(Ge)、铪(Hf)、钬(Ho)、镥(Lu)、镁(Mg)、锰(Mn)、钋(Po)、铼(Re)、钌(Ru)、钪(Sc)、铥(Tm)、钇(Y)、铽(Tb)、铒(Er)、镱(Yb)、(Hs)、(Db)。 * 此文第一部分刊登于本刊2007年第4期。  相似文献   

17.
日本研发出的光触媒净水技术,有望为全球28亿人解渴.联合国粮食和农业组织预估,2025年全球将有28亿人饮用水不足,而日本企业研发的新型低成本光触媒净水技术有望解决这一问题.该技术是将特殊光触媒粉末倒入污水中,通过照射紫外线即可分解水中有毒金属,净化成饮用水,此技术还可用于整治受污染河川,且对环境生态无害.  相似文献   

18.
本项目是国家重点新产品研究开发项目,由新疆天业塑化集团与浙江大学、四川大学进行技术合作,主要由新疆天业塑化集团完成.该产品通过新疆兵团科技局组织的科技成果鉴定,认定该项目技术水平达到国内领先,并评为新疆兵团科技进步一等奖.  相似文献   

19.
《中国科技成果》1999,(12):53-54
一、主要技术内容 该项目采用化学药剂除去种仁表皮和天然植物适度染色等新工艺,制做出的糖水板栗罐头色泽鲜亮、罐液澄清、风味优良,制罐工艺和产品质量均属国际先进水平,盐酸蚀皮技术防止褐变为国际首创.该项目通过对加工品种的筛选,认为板栗制罐品种应选择含糖量高,单宁、淀粉、蛋白质含量少的,同时颗粒在7克以上者适宜制罐,适合的品种有红光、泰安薄壳、徐家一号、九家种、郯城大油等.通过板栗种仁切片显微观察,发现种仁的单宁细胞多集中在栗仁表皮的一层细胞以及表皮内的1~2层薄壁细胞,这两层厚度约为0.2~0.25毫米,单宁含量内层为600~840ppm;外层为1110~1600ppm,约为内层的两倍.制罐之后板栗都会变褐,因此制罐前一定要除去含单宁多的种仁表层细胞,才能防止褐变.  相似文献   

20.
一、主要技术内容酶法生产低聚果糖为"八五"及"九五"国家重点科技攻关计划项止编号为96-C03-01-01.该项目已通过了原国家科委组织的技术鉴定和验收,并获国家发明专利,专利号为:ZL96104959.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号