首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
设G是n个顶点的完全图,得到了完全图的全符号控制数。  相似文献   

2.
完全图的全符号控制数   总被引:2,自引:0,他引:2  
设G是n个顶点的完全图,得到了完全图的全符号控制数。  相似文献   

3.
徐保根  汤友亮  罗茜 《江西科学》2011,29(5):546-549
设G=(V,E)是一个非空图,对于一个函数f∶V(G)∪E(G)→{-1,1},则称f的权重为w(f)=∑x∈V(G)∪E(G)f(x)。若x∈V(G)∪E(G),定义f[x]=∑y∈NT[x]f(y)。如果对所有的x∈V(G)∪E(G)都有f[x]≤1,则称f是图G的一个反全符号控制函数。G的反全符号控制数定义为γ*...  相似文献   

4.
几类图的强符号控制数   总被引:1,自引:0,他引:1  
本文对几类特殊图的强符号控制函数及强符号控制数进行了研究,给出了完全图、完全二部图、路及圈的强符号控制数.  相似文献   

5.
本文对几类特殊图的强符号控制函数及强符号控制数进行了研究,给出了完全图、完全二部图、路及圈的强符号控制数。  相似文献   

6.
通过对图G边集分折的方法,对图的符号边全k控制问题进行了研究,得到了连通图G的符号边全k控制γskt(G)的2个下限,并确定了所有路符号边全k控制数.  相似文献   

7.
用γ′st(G)表示图G的符号边全控制数,给出了一般图的符号边全控制数的下界 ,最后确定完全图的符号边全控制数.  相似文献   

8.
熊坤  苏健基 《广西科学》2007,14(3):209-212
给出Km×Cn,Cm×Cn,Km×Kn这三类图的符号星控制数.  相似文献   

9.
通过对图G的边集分析的方法,对图的符号星k控制数进行研究,确定了几类图的符号星k控制数  相似文献   

10.
设G视n个轮Wm的拷贝组成的,且这n个轮有且仅有一个公共非中心点.文章主要讨论了G的符号控制数,并给出了它的符号控制数的精确值.  相似文献   

11.
孙艳丽  孙磊 《山东科学》2005,18(4):5-7,10
全染色猜想在分数全染色的意义下是成立的,在此基础上,我们进一步研究了几类特殊图的分数全色数,如圈、完全图、完全二部图、平衡完全r-部图。  相似文献   

12.
设G是一个图,G的全着色是一个映射π:V(G)YE(G)C,使得相关联或相邻的元素着不同色;G的所有全着色中,使得色数的最小者,称为G的全色数,记为χT(G);得到了几个特殊图的全色数  相似文献   

13.
不含孤立点的图G称为全控制边临界的,如果对任意两个不相邻顶点u和v, 有γt(G uv)<γt(G).也称这样的图为γt-临界的. 如果该图G的全控制数为k,称G为k-γt-临界的.一个γt-临界图G称为强γt-临界的, 如果对任意顶点v∈V(G)存在G的一个基数为γt(G)-1的控制集D使得G[D]除v外不含孤立点.研究了强γt-临界图的性质,给出了一个由小的强γt-临界图构造大强γt-临界图的方法.  相似文献   

14.
设γ’st(G)表示图G的符号边全控制数,给出了一般图G和超立方体的符号边全控制数的一个下界和一个上界,计算了等完全二部图的符号边全控制数的精确值。  相似文献   

15.
设G为n阶连通图,集合S称为图G的全控制集,如果V(G)的每个顶点都和S中某点相邻。图G的全控制数,记为γt(G),是图G的全控制集的最小基数。证明了对阶数n≥3且T≠K1,n-1的树T,γt(T)=min{(2n/3),n-l,[n/2]+l-1},这里l表示树T中叶子的数目。  相似文献   

16.
定义在图G上的一个函数f:V(G)→{1,0,1},如果在任何一点的开领域的权和至少为1,则称,是一个全负控制函数(简记为(MTDF).对一个全负控制函数,而言,如果不存在一个全负控制函数g:V(G)→{-1,0,1},f≠g,对每个点v∈V(G),有g(v)≤f(v),则称,是极小的.一个MTDF f的权是指其所有点函数值的总和.图G的全负控制数是G的极小MTDF的最小权,而图G的上全负控制数是G的极小MTDF的最大权.本文主要研究这两个参数,得到它们的一些界的结论.  相似文献   

17.
图G的边完整度定义为I'(G)=mins包含于E{|S| m(G-S)},其中S是图G的边集E(G)的任一子集,m(G-S)表示图G-S的最大分支的顶点数。这个参数可用来衡量网络,特别是通讯网络的可靠程度,它不仅刻画了破坏网络的难易程度,而且刻画了网络遭受破坏的程度。文中主要给出了格子图,轮图,完全图的卡氏积等特殊图的边完整度。  相似文献   

18.
设G=(V,E)是一个没有孤立顶点的图,如果一个函数f:E→{-1,1},满足f(E(v))≥1,v∈V(G),则称f为图G的一个符号星控制函数.图G的符号星控制数定义为:γss(G)=min{f(E)|f为G的反符号星控制函数},论文确定了pq(2pq,且p、q为互异的素数)阶群Q上Cayley图X(Q,M)的符号星控制数γss(X(Q,M))=(p-1)q+1,M表示群Q的极小生成集.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号