首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于现场观测,对特大跨度悬索桥吊杆风致振动现象进行了定性分析,排除了尾流驰振、涡激共振以及风雨激振的可能性.通过数值模拟和理论分析,表明这是一种主缆抖振引起的吊杆共振现象.随机风场激起主缆的随机抖振,而主缆的抖振含有丰富的模态成份,当吊杆的自振频率与具有一定抖振能量的主缆模态的频率充分接近时会激发吊杆的共振.因此,从来流紊流风场中获得能量的是主缆而非吊杆自身.由于与主缆的模态质量相比,一根或几根吊杆的模态质量很小,因此吊杆大幅振动吸收的能量并不会对主缆的振动带来实质性的影响,从而可形成一个相对稳定的能量供给机制.此外,在主缆上加设TMD抑制主缆在吊杆自然频率附近的振动,对吊杆风振有明显的抑制效果.  相似文献   

2.
为研究超大跨径CFRP缆索悬索桥的静力特性,并比较其与传统钢悬索桥静力性能的区别,探索性设计了主跨分别为2000 m、3000 m的CFRP缆索悬索桥和钢缆索悬索桥,以及主跨为5000 m的CFRP缆索悬索桥,采用有限元法对比分析了这几种悬索桥在恒载、汽车荷载以及温度作用下的内力和变形.结果表明:在恒载作用下,随着跨径的增大,结构内力迅速增大,且跨径越大增长速度越快,相同跨径条件下,CFRP缆索悬索桥主缆张力、吊索平均索力均小于钢缆索悬索桥的相应值,但加劲梁最大弯矩值略大;在汽车荷载作用下,CFRP缆索悬索桥的竖向位移稍大于钢缆索悬索桥的相应值;在温度作用下,CFRP缆索的内力增量和竖向位移较钢缆索的相应值小很多.  相似文献   

3.
针对空间缆索悬索桥体系转换过程中主缆发生扭转,而扭转刚度为多因素影响的变量,数值模拟中难以准确考虑,从而无法精确计算主缆扭转角及确定索夹预偏角的难题,以杭州江东大桥为工程背景,揭示了吊索张拉过程中主缆的扭转机理,从理论上分析了钢丝层间摩擦力对主缆扭转刚度的影响,并将拉-扭耦合效应及钢丝层间摩擦力在数值模拟中加以考虑,有效提高了计算精度,并通过改变抗扭刚度系数、吊杆张拉力、索夹预偏角等参数,确定主缆扭转特性与扭转效应,揭示了其正反扭原理.研究结果表明:体系转换过程中主缆扭转变化历程在数值模拟中需通过非线性迭代实现;随吊杆张力增大,主缆抗扭刚度从最小值逐步增加,改变主缆的抗扭刚度系数对主缆最终扭转角的影响不大;改变某索夹横向预偏角,主缆扭转现象存在"弱相干性原理"和"相邻影响原理";索夹预偏角小于(或大于)吊杆力与铅垂线夹角,主缆将跟随索夹发生正向(或反向)扭转,当吊杆力方向通过主缆形心时,扭转角不再改变.  相似文献   

4.
景观悬索桥的装饰缆索不参与主结构受力,但却是桥梁不可分割的一部分.为保证其成桥后主缆及吊杆线形,必须有一定的内力与主桥相匹配.提出了一种针对悬索桥装饰缆索的找形及内力计算方法,首先建立主缆模型,并将各吊杆作用简化为竖向约束,计算各区段缆索拉力及吊杆的张力,进而通过主缆及吊杆的适宜张力计算其下料长度.结合新疆某景观悬索桥实例,利用MIDAS/Civil建立主缆局部有限元模型,计算主缆、吊杆张力及理论下料长度,并对其进行风振激励下的动力特性验算.按该方法计算的下料长度及拉力进行施工,成桥后各方面均可满足要求.  相似文献   

5.
空间缆索悬索桥的主缆线形分析   总被引:26,自引:0,他引:26  
用空间分析模型 ,考虑了主缆和吊索的耦合效应和鞍座的影响 ,采用数值解析法对空间缆索悬索桥成桥状态和空缆状态主缆线形进行分析 ,然后通过算例验证了所提方法的正确性 .计算表明 ,该方法具有使用方便、计算速度快、精度高等优点 ,并适用于多跨空间缆索悬索桥、纵桥向斜吊索及常规悬索桥  相似文献   

6.
针对空间主缆自锚式悬索桥体系转换过程中主缆易产生扭转、错位、鼓丝等问题,以杭州江东大桥为研究背景,采用钢丝绳主缆替换平行钢丝主缆,进行几何缩尺比为1∶15的模型试验,设计二合一多功能索夹、吊索张拉锚固系统、主缆锚固装置、吊杆力测试装置、缆索位形测量装置等,进行不同形式索夹、不同吊索索夹预偏角、不同吊杆张拉力的模型试验,研究了钢丝绳空间主缆截面的扭转性能。研究结果表明:设计的二合一多功能索夹与张拉锚固系统能方便地实现不同形式索夹、不同吊索索夹预偏角、不同吊杆张拉力的模型试验;给索夹设置准确的初始预偏角可有效减小体系转换过程中主缆的扭转角;当吊杆横桥向倾角相同时,所有索夹固定为0°且均可自由转动情况下,主缆各测点的扭转角相差很小,绕主缆自由转动形式的索夹对主缆扭转角改善并不明显;当索夹均未设置初始横向预偏角时,随吊杆横向桥倾角的增大,主缆扭转角逐渐增大。与平行钢丝主缆相比,钢丝绳主缆在吊杆张拉过程中产生的扭转角更小,在空间悬索桥中扭转性能更好,适用性更强;主缆产生横向变形过程中也会发生扭转,这与弯桥的弯扭耦合类似,吊索力偏心仅引起局部扭矩,由主缆整体横向变形导致的扭转角有待进一步研究。  相似文献   

7.
针对钢桁架粱式悬索桥工程实例,通过Midas/Civil建立模型计算,运用子空间迭代法得出该桥型的动力特征;再以不同的荷载工况分析主缆和吊索的位移时程曲线及各杆件的内力变化.结果表明:车辆荷载作用下桥跨发生最大位移的部位在1/4跨处;当车辆单侧行驶时,较小荷载引起主缆两侧位移变化不大;随着车辆荷载的增大,未加载侧主缆位移变化明显小于加载侧主缆位移变化;桥梁端部吊杆与桥塔间距大于标准吊杆间距,车辆荷载作用下端部吊杆应力较大;桥梁最不利位置在端部支座位置处以及跨中位置,应重点监测桥梁端部吊杆及钢桁架下弦杆的应力变化,防止由此引起的重大事故发生.  相似文献   

8.
缆索系统是悬索桥最主要的承重构件之一,目前已有文献资料提出主缆和吊索的估算方法及公式。文章结合重庆寸滩长江大桥的设计及其他文献资料,对估算公式进行了验证,并提出修改意见,为今后同类桥梁缆索系统的估算提供参考依据。  相似文献   

9.
为研究限位吊索对大跨缆索桥梁结构静动力特性的影响,以某非对称三跨连续悬索桥为工程背景,建立了大桥有限元模型,并通过实测验证了模型的正确性,探究了限位吊索对大桥主缆线形、主梁线形及动力特性的影响.研究结果表明:限位吊索可协调三跨连续悬索桥边跨过渡墩处主缆与主梁的竖向变形,使得结构具有合理的应力分布;当一侧不设限位吊索时,主缆最大变形可达355.7 mm,同时引起其余吊索发生应力重分布,使得边跨主梁产生最大正向变形值,并在另一侧边跨产生最大负向变形值;当全桥均不设限位吊索时,主缆与主梁两侧变形均达到最大值,应力重分布呈对称分布;限位吊索主要影响三跨连续悬索桥前3阶竖弯模态频率,设置限位吊索可略微提高结构的竖向刚度.  相似文献   

10.
分析了自锚式悬索桥等代梁的特点,对某座具体桥梁进行了有限元参数分析,并用等代梁解释分析结果,确定不同影响因素对于自锚式悬索桥静力行为的影响程度.研究结果表明,为了改善自锚式悬索桥的静力行为,可以增加主跨主缆垂跨比、主梁拱度、主缆材料的弹性模量、主梁材料的弹性模量、主梁截面惯性矩、吊索材料的弹性模量、吊索的截面面积,减小吊索的长度.  相似文献   

11.
悬索桥架设过程中 ,当主塔、主缆的施工误差超过规定的限值时 ,需通过调整吊索长度 ,以消除这些误差对加劲梁施工的影响 ,保证成桥后桥面线形符合设计要求 .为此 ,提出了一种实用的调整吊索长度的计算方法 .该法是将成桥状态结构的几何形状及内力通过 2个阶段的不同结构体系 ,用几何非线性有限元法多次迭代而得 .算例结果表明该法具有较高的精度悬索桥架设过程中吊索长度调整的计算方法@潘永仁 @范立础 @杜国华  相似文献   

12.
为确定既有拱桥亮化改造后柔性吊索的涡激共振性能,结合数值模拟和风洞试验 开展了研究 . 针对既有吊索和新增吊索的亮化方案,对典型断面在不同来流风向下的绕流特 性进行了模拟,并讨论了气动力系数和旋涡脱落行为随风向角的演变规律. 然后,通过节段模 型风洞试验测试了吊索在不同风向角来流作用下的涡振响应,并结合数值模拟的结果对试验 现象进行了分析. 结果表明:在既有吊索上安装亮化灯具显著改变了其涡振性能. 当来流风垂 直于桥轴线时,沿索轴方向两种典型截面的旋涡脱落频率、强度有较大差异,减小了吊索整体 发生涡激共振的可能;当来流风向角在 30°附近时,两种典型截面的旋涡脱落特性趋于一致, 增大了吊索整体发生涡激共振的可能 . 新增吊索更为轻柔,外包矩形灯罩后发生涡激共振的 可能性很大,需要考虑必要的抑振措施.  相似文献   

13.
以杭瑞洞庭大桥为研究对象,建立设置中央扣和无中央扣的大跨度悬索桥有限元模型,研究中央扣对悬索桥跨中短吊索疲劳损伤的影响。首先,采用谐波合成法生成大桥桥址处的脉动风场,采用Monte Carlo法模拟随机车流样本,基于ANSYS软件建立风-车-桥耦合振动分析模型,分析桥梁结构在脉动风和车辆荷载单独与联合作用下的动力响应;其次,采用雨流计数法统计跨中短吊索的应力时程,得到吊索的应力幅值、应力均值和循环次数;最后,基于Miner损伤线性累计理论分析中央扣对跨中短吊索的等效总应力幅值和疲劳损伤度的影响。研究结果表明:中央扣对悬索桥竖弯刚度影响较小,但会提高悬索桥的纵飘刚度和反对称扭转刚度,显著减小荷载作用下缆梁相对位移和跨中短吊索的弯曲应力;中央扣不会改变脉动风荷载作用下跨中短吊索的缆梁相对运动特性,但会改变车辆荷载作用下跨中短吊索的缆梁相对运动特性,并显著降低缆梁相对位移对车速的敏感性;在脉动风和车辆荷载联合作用下,跨中短吊索的等效总应力幅值小于脉动风和车辆荷载单独作用下等效应力幅值的叠加值;在脉动风和车辆荷载联合作用下,中央扣会显著减小跨中短吊索尤其是靠近中央扣位置处吊索的等效总应力幅值和...  相似文献   

14.
为了研究活性粉末混凝土(Reactive Powder Concrete,RPC)和碳纤维复合材料(Carbon Fiber Reinforced Polymer,CFRP)在大跨径斜拉桥中应用的可行性,以主跨1 100m的钢斜拉索、钢主梁、普通混凝土索塔斜拉桥设计方案为基础,构造了一座同等布置形式的CFRP拉索、RPC主梁、RPC索塔斜拉桥方案.采用有限元法对2种方案斜拉桥的动力特性、抗风性能等进行了分析和比较.结果表明:2种方案结构的自振基频相差不大,CFRP索RPC主梁斜拉桥的主梁颤振稳定性有所提高,其抖振响应位移较钢索钢主梁斜拉桥明显降低.CFRP拉索的自振频率达钢斜拉索的2倍;与钢斜拉索相比,CFRP拉索涡振幅值有所增大,但整体而言2种方案斜拉索的涡振幅值均很小,不影响其安全;CFRP拉索的风雨激振振幅不到钢斜拉索的1/2,且前者与风雨激振相关的临界风速较后者有所提高.应用高性能材料RPC与CFRP的大跨径斜拉桥整体抗风性能优于传统的钢斜拉索钢主梁斜拉桥,从抗风性能角度而言,将高性能材料RPC与CFRP应用于大跨径斜拉桥中是可行的.  相似文献   

15.
在一组能描述梁索耦合结构中主缆曲率和吊索变形对系统影响的偏微分方程组基础上,通过Galerkin方法得到了系统在时域上一次截断的非线性常微分方程组.用多尺度法分析了所得的非线性常微分方程组.得到了主共振和1:2内共振情况下以作用在梁上荷载的幅值为参数的振幅响应曲线和一次近似解析解.结果显示,一次近似解析解有良好的精度....  相似文献   

16.
悬索桥架设过程中,当主塔、主缆的施工误差超过规定的限值时,需通过吊索长度的调整,以消除这些误差对加劲当众施工的影响,保证成桥后桥面线形符合设计要求,为此提出了一种实用的调整吊索长度的计算方法,该法中成桥状态结构的几何形状及内力发2个阶段用几休非线性有限元法模拟整个架设过程,迭代得到,算例结果表明该法具有较高精度。  相似文献   

17.
自锚式悬索桥空间主缆线形的计算方法   总被引:3,自引:0,他引:3  
基于空间分析模型,研究了自锚式悬索桥空间主缆线形的精确计算方法,根据主缆在吊杆之间的各索段在自重作用下呈悬链线,推导并研究了空间主缆在吊杆力作用下坐标的迭代计算方法.根据主缆空间线形及其理论交点,确定合理的鞍座位置,根据主缆无应力长度不变的原则,确定主缆的空缆线形.基于上述理论,以某空间缆索自锚式悬索桥为例,进行了详细的分析,给出了主缆无应力长度、鞍座位置、鞍座预偏量等,确定了该桥的合理成桥状态及空缆状态时的线形.算例分析表明:空间缆索自锚式悬索桥主缆线形计算方法是正确、可行的.  相似文献   

18.
随着桥梁跨径的增大,桥梁索结构的长细比越来越大、频率越来越低,出现了一些 新的风致振动问题,如悬索桥吊索风致振动、斜拉索高阶涡激共振、安装亮化灯具的桥梁索结 构驰振等. 针对这些新挑战,采用现场观测、风洞试验和理论分析等手段,研究人员进行了系统 的机理研究,并提出了一些有效的振动控制措施. 结果表明:悬索桥吊索风致振动的机理复杂, 在斜拉索上积累的振动控制经验难以直接应用,安装刚性分隔架是抑制索股相对振动的有效 手段;已在多座大跨径斜拉桥上观测到斜拉索高阶涡激共振,增加了斜拉索振动控制的难度, 采用双阻尼器是可同时控制斜拉索高阶涡激共振和低阶风雨激振的有效方案;在桥梁索结构 上安装亮化灯具极易引发驰振,增加阻尼器和优化灯具气动外形是避免该类振动的有效措施.  相似文献   

19.
为精确模拟吊索断裂动力过程,基于拆除构件法,对模拟悬索桥断索动力过程的数值方法展开研究.以某自锚式悬索桥为工程背景,详述了三种悬索桥吊索断裂动力过程模拟方法(瞬时刚度退化法、瞬时加载法、等效卸载法)的机理和特点,并对影响结构断索动力响应的因素展开分析.研究表明:采用瞬时刚度退化法模拟悬索桥吊索断裂动力过程简单有效;悬索桥断索后结构的动力响应与限元分析模型中是否包含失效吊索单元、断索持续时间、断索过程中吊索拉力损失变化关系以及断索工况等因素密切相关.  相似文献   

20.
吊索是决定悬索桥结构安全的关键构件,已建悬索桥的吊索普遍存在锈蚀的现象,在锈蚀与疲劳荷载作用下,吊索可能发生突然断裂.已有研究及工程实例均表明,单根吊索断裂后其余的吊索有连续断裂的危险,从而导致全桥的倒塌.使用双吊索可以改善断索对悬索桥结构安全的影响.为研究双吊索对悬索桥安全性的改善程度以及断索后悬索桥结构的动力响应,基于非线性静力和动力分析方法,以某200 m的混凝土自锚式悬索桥为例,进行了悬索桥断索后结构的响应研究.研究结果表明,双吊索能大幅度降低断索后悬索桥结构的响应,从而提高了全桥在运营维护阶段的安全性.研究结论可为悬索桥吊索的更换、维修和加固提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号