首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了对灾难场景图像进行快速分析和识别,提出了一种基于多分辨率卷积神经网络和残差注意力机制(attention module)相结合的图像分类模型.首先,对灾难场景数据集进行预处理,在相同类型的条件下将其随机划分为训练集和测试集.基于改进的卷积神经网络(convolutional neural network,CNN),...  相似文献   

2.
具有表达能力及可辨别性更强的特征是图像分类与识别技术的关键。深度CNN特征经过多次中间非线性变换,特征鲁棒性更强,在图像分类与识别领域已取得重大进展。但传统的CNN模型只增加变换层次,下层变换依赖于上层输出结果,因此其中间特征冗余度较低,最终得到的特征向量信息丰富程度不够。本文提出一种基于双流混合变换的CNN模型——DTM-CNN。该模型首先使用不同大小的感受野卷积核提取图像不同的中间特征,然后在多次深度变换时,对中间特征进行混合流动,经过多次混合变换,最终得到1024维的特征向量,并使用Softmax回归函数对其分类。实验结果表明,该模型经过多次卷积、池化及激活变换,提取的特征更加抽象、语义及结构信息更加丰富,对图像具有更强的表达能力及辨别性,因此图像分类及识别性能优越。  相似文献   

3.
针对ML-GCN中标签共现嵌入维度过高影响模型分类性能和ML-GCN中没有充分发掘标签之间不对称关系的问题,提出一种基于图注意力网络的多标签图像分类模型ML-GAT;ML-GAT模型首先对高维标签语义嵌入矩阵进行降维;然后通过降维后的低维标签语义嵌入表示和标签类别共现图得到标签共现嵌入;与此同时ML-GAT将多标签原始...  相似文献   

4.
针对传统图像分类方法在花卉图像上存在分类效果不佳的问题,提出一种改进Xception网络的方法。首先结合Res2net中的多尺度模块来提高模型特征信息的丰富度,提出Multi_Xception网络,接着使用1×1卷积核对多尺度深度可分离卷积模块的输入特征图进行信道压缩,减少模型参数的同时进一步丰富模型特征信息,提出Multi2_Xception网络。将改进模型应用于Flowers Recognition花卉数据集分类,实验结果表明,该方法相较于原算法分类准确率提升了1.64%,F1-score提升了0.018,验证了多尺度Xception网络的有效性。  相似文献   

5.
胸部疾病高发,且有些疾病种类的癌症转变率很高,因此基于卷积神经网络的胸部X光图像疾病自动检测分类方法是计算机辅助诊断的研究热点之一.然而,目前的自动分类方法仍面临胸部病灶的X光图像特异性特征表达不充分、不同胸部疾病发病率不平衡、卷积神经网络参数量过大等问题.针对上述问题,提出了一种端到端的基于八度卷积的ResNet(octave convolution based residual network,OC-ResNet)结构.首先,利用八度卷积改进ResNet中的普通卷积,将高低频特征分离,增强对高频信息的提取,以更好地表达胸部病灶的特异性特征,降低模型计算复杂度.其次,利用渐进式迁移学习,将OC-ResNet在ImageNet数据集进行预训练,获得网络的初始参数,然后固定网络浅层参数,在ChestX-Ray14数据集上微调网络深层参数.最后,为改善样本不平衡问题,网络训练时,采用了焦点损失函数,增加样本数较少类别的权重.在ChestX-Ray14数据集上的实验结果表明,OC-ResNet对14种胸部疾病分类的平均AUC值达到0.856,与目前先进的深度学习方法相比,其中13种疾病分类的...  相似文献   

6.
7.
针对MobileNetV2网络在图像分类任务中特征表达不足的问题,提出一种结合注意力机制对MobileNet网络的改进策略。利用一种新颖的高效且无参的注意力模块,同时结合I-block模块来替换MobileNet网络中的倒残差模块,采用RReLU激活函数替代原ReLU激活函数保留更多特征,结合inception结构进行多尺度特征提取与融合,使其可以提供更强的多尺度特征表达并服务于图像分类任务,使用数据扩增技术,生成更多样本。与6种方法进行对比,实验结果表明,采用3D注意力机制的网络在数据集CIFAR-10、CIFAR-100上以最少的网络参数分别取得94.09%和75.35%的最高精度,表明该改进方法可以有效地进行快速图像分类。  相似文献   

8.
不同类别物体之间的共生关系对多标签航拍图像分类任务有非常重要的作用.提出一种基于像素-目标级共生关系学习网络的多标签航拍图像分类方法,主要包括像素级共生关系学习模块和目标级共生关系学习模块.像素级共生关系学习模块利用不同空间位置像素点之间的特征相似性来间接度量共生关系,但由于单个像素点不能完全表征整个物体,所以这种像素...  相似文献   

9.
基于深度学习网络的电气设备图像分类   总被引:1,自引:0,他引:1  
为了对变电站中智能巡检系统采集到的海量图片进行快速分析和识别,提出一种深度学习和支持向量机(support vector machine, SVM)相结合的图像分类模型。首先,运用旋转、翻折等方法对采集到的原始数据进行扩充。然后,合并扩展图像集,并在相同类型的条件下将其随机划分为训练集和测试集。基于实际图像改进卷积神经网络(convolutional neural network, CNN),并提取训练集的图像特征。最后,通过使用训练集图片的深度特征来训练SVM分类器,并且在测试集图片上实现分类测试。利用巡检机器人采集到的8 000张图片对模型精度进行实验验证,结果表明,该模型具有较强的分类性能。  相似文献   

10.
基于卷积神经网络提出了一种多任务模型将乳腺癌组织学图像分为良性与恶性及其子类.该模型是多任务模型,任务一将病理图像分为良性与恶性,任务二将图像分为良性与恶性的子类.模型总的损失函数是两个分类任务损失函数的加权和.该模型采用卷积层和全局平均池化层替代末端全连接层作为分类层,应用数据增强方法提升模型的性能.模型使用乳腺癌病...  相似文献   

11.
对于多波段、高维度的高光谱图像,不同的地物有着不同的特征表示,单独的一种特征可能无法全面覆盖所有的地物信息。因此,希望获得多特征以尽可能的覆盖所有地物信息,以期有效地选择和利用多种类型的特征。本研究提出了一种基于多特征图像的集成学习方法(MFI-EL)用于高光谱图像分类。首先,不同的特征提取方法获得反映不同地物信息的特征图像。其次,每一种特征图像采用支持向量机分类,选择其中最优的作为基本核之一。最后,利用自适应增强方式不断进行学习,获得多个最优的基本核,根据每个核的重要性将其集成为最终的分类结果。采用三幅真实的高光谱图像进行实验,实验结果表明,提出的方法优于其他的集成方法。  相似文献   

12.
在层次多标签分类问题中,一个样本同时被赋予多个类别标签,并且这些类别标签被组织成一定的层次结构。层次多标签分类问题的主要挑战在于:①分类方法的输出必须符合标签的层次结构约束;②层次深的节点所代表的标签往往只有很少的样本与之相关,造成标签不平衡的问题。提出一种用于层次多标签分类问题的增量式超网络学习方法(hierarchical multi-label classification using incremental hypernetwork, HMC-IMLHN),通过将超网络的超边组织成相应的层次结构,使输出的预测标签能够满足标签的层次约束。此外,超网络学习方法可以利用标签之间的关联减少标签不平衡问题对分类性能的影响。实验结果表明,与其他层次多标签分类方法相比,提出的增量式超网络方法能够取得较好的分类准确性。  相似文献   

13.
为了提高图像分类的准确度,提出基于最小Hausdorff距离的多示例多标记K近邻图像分类方法。该方法通过改善图像包的生成方法,均匀分割并提取图像的颜色和纹理特征,使用最小Hausdorff距离作为包间的距离度量,对多示例多标记K近邻算法进行改进。实验结果表明,该方法提高了分类准确度,减少了运行时间。  相似文献   

14.
多标签分类是指数据可以同属于多个类的分类问题,其数据特征和标签间相关性对分类结果存在影响。因此,提出一种融合前述两种因素的多标签分类算法。将数据用核函数进行特征映射,根据训练数据的k-邻域计算得到每个标签的最大后验概率;并将其加入到对应的数据特征中。用加入最大后验概率的数据特征训练分类器。通过在经典的yeast、scene和emotion数据库上实验,证明了算法的有效性。  相似文献   

15.
基于支持向量机的图像分类   总被引:2,自引:1,他引:2  
介绍了支持向量机(SVM)的基本原理,并将它应用于图像分类.提取多种视觉特征作为SVM的输入向量,比较单一视觉特征和综合视觉特征作为SVM输入向量时的分类性能.还比较了多项式核和高斯径向基核的分类效果.实验结果表明,混合特征明显优于单一视觉特征,高斯径向基核优于多项式核.  相似文献   

16.
17.
18.
基于内容的医学图像分类研究   总被引:2,自引:0,他引:2  
基于内容的医学图像分类是一个复杂的非线性问题,分类器的性能主要取决于提取的特征和模式识别算法。讨论了医学图像基本特征提取方法和多特征融合技术的发展,以及常用的模式分类算法。最后指出了支持向量机在医学图像分类中应用时需要解决的问题。  相似文献   

19.
针对情感分析问题中长句和短句进行情感分类时不同的建模特点,提出了一种基于联合深度学习模型的情感分类方法。该方法融合长短期记忆模型(LSTM)与卷积神经网络(CNN)对影视评论数据进行情感极性判别,该方法采用LSTM模型对上下文进行建模,通过逐词迭代得到上下文的特征向量,采用CNN模型从词向量序列中自动发现特征,并从局部抽取特征后将局部特征整合成全局特征来提高分类效果。所提出的方法在COAE2016评测的任务2的情感极性分类任务中,其系统准确率获得最好结果。  相似文献   

20.
针对传统图像分类识别方法采用单一传感器获得图像存在的局限和不足,提出了一种基于红外和可见光融合的分类算法。首先分别对红外图像和可见光图像提取密集型尺度不变特征变换(D-SIFT),然后采用无字典模型(CLM)变换,并利用空间金字塔匹配(SPM)进行精细划分,最后用混合核支持向量机(SVM-CK)方式将红外和可见光在特征级融合并分类。在VAIS和RGB-NIR两个数据库上对该方法进行验证,融合后分类精度分别比单一图像源均有较大提高;与BoVW方法比较,精度分别提高了4.7%和12.1%。证明多数据源融合的方法综合了红外和可见光各自成像的优势,使获得的特征信息更完善,分类效果显著高于单一数据源的分类结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号