首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon is essential for optimal growth of rice (Oryza sativa L.). This study was conducted to fine map qHUS6.1, a quantitative trait locus (QTL) for rice hull silicon content previously located in the interval RM510–RM19417 on the short arm of chromosome 6, and to analyze the effect of this QTL on the silicon content in different organs of rice. Selfed progenies of a residual heterozygous line of rice were detected using 13 microsatellite markers in the vicinity of qHUS6.1. Three plants with overlapping heterozygous segments were selected. Three sets of near isogenic lines (NILs) were developed from the selfed progenies of the 3 plants. They were grown in a paddy field and the silicon contents of the hull, flag leaf, and stem were measured at maturity. Based on analyses of the phenotypic distribution and variance among different genotypic groups in the same NIL set, a significant genotypic effect was shown in the NIL set that was heterogenous in the interval RM19410–RM5815, whereas a significant effect was not found in the remaining 2 NIL sets that were heterogenous in either of the intervals RM4923–RM19410 or RM19417–RM204. On comparison among the physical positions of the 3 heterogenous segments, qHUS6.1 was delimited to a 64.2-kb region flanked by RM19410 and RM19417 that contains nine annotated genes according to the genome sequence of Nipponbare. This QTL showed strong effects on all of the three traits tested, and the enhancing alleles were always derived from the paternal line Milyang 46. The present study will facilitate the cloning of qHUS6.1 and the exploration of new genetic resources for QTL fine mapping.  相似文献   

2.
Leaf senescence as an active process is essential for plant survival and reproduction. However, premature senility is harmful to agricultural production. In this study, a rice mutant, named as psl3 (presescing leaf 3) isolated from EMS-treated Jinhui 10, displays obvious premature senility features both in morphological and physiological level. Genetic analysis showed that mutant trait was controlled by a single dominant gene (PSL3), which was located on rice chromosome 7 between SSR marker c7sr1 and InDel marker ID10 with an interval of 53.5 kb. The result may be useful for the isolation of the PSL3 gene.  相似文献   

3.
Much attention has been paid to leaf shape of rice in the process of ideotype breeding[1]. Several authors have reported that the rolling of leaf in some degree helps keep it erect, consequently optimizing canopy light transmission condition, which is good for dry matter accumulation and for high yield[2―6]. Rice as a polymorphic crop has many types of vari- ety with different morphologies. In terms of leaf shape, different cultivars with rolling leaf have been identifiedin rice germplasm. Le…  相似文献   

4.
Hybrid sterility is a major hindrance to utilizing the heterosis in indica-japonica hybrids. To isolate a gene Sc conferring the hybrid sterility, the locus was mapped using molecular markers and an F2 population derived from a cross between near isogenic lines. A primary linkage analysis showed that Sc was linked closely with 4 markers on chromosome 3, on which the genetic distance between a marker RG227 and Sc was 0.07 cM. Chromosome walking with a rice TAC genomic library was carried out using RG227 as a starting probe, and a contig of ca. 320 kb covering the Sc locus was constructed. Two TAC clones, M45EI4 and M90J01 that might cover the Sc locus, were partially sequenced. By searching the rice sequence databases with sequences of the TACs and RG227 a japonica rice BAC sequence, OSJNBb0078P24 was identified. By comparing the TAC and BAC sequences, six new PCR-based markers were developed. With these markers the Sc locus was further mapped to a region of 46 kb. The results suggest that the BAC OSJNBb0078P24 and TAC M45EI4 contain the Sc gene. Six ORFs were predicted in the focused 46-kb region.  相似文献   

5.
Fine mapping of a semidwarf gene sd-g in indica rice(Oryza sativa L.)   总被引:4,自引:0,他引:4  
The semidwarf gene sd-g which has been usedin indiea rice breeding in southern China is a new one, non-allelic to sd-1. To map sd-g, an F2 population derived fromthe cross between Xinguiaishuangai and 02428 was con-structed. The sd-g was roughly mapped between two mi-crosatellite markers RM440 and RM163, with genetic dis-tances of 0.5 and 2.5 cM, respectively. Then nine new poly-morphic microsatellite markers were developed in this region.The sd-g was further mapped between two microsatellitemarkers SSR5-1 and SSR5-51, with genetic distances of 0.1and 0.3 cM, respectively, while cosegregated with SSR418. ABAC contig was found to span the sd-g locus, the region be-ing delimited to 85 kb. This result was very useful for cloningof the sd-g gene.  相似文献   

6.
7.
Asymmetric somatic hybrid plants were produced between cultivated rice (Oryza sativa L.) and wild species [O. meyeriana (Zoll. etMor, exSteud.)] with high resistance to rice bacterial blight. X-ray-irradiated protoplasts of the wild species were used as donor and chemically fused with iodoacetamide-inactivated protoplasts of rice cv. 02428 to produce hybrids. Seventy-two plants were regenerated from 623 calli based on metabolic complementation. The morphological characters of the plants closely resembled that of the rice. Simple sequence repeats were employed to identify their hybridity. Cytological analysis of root-tips revealed that their chromosome number varied in the range of 27--38. The somatic hybrids were inoculated with strains of Xanthamonas oryzae pv. oryzae at adult growth stage and demonstrated the resistance to bacterial blight introgression from the O. meyeriana.  相似文献   

8.
Tiller angle of rice is an important agronomic trait that contributes to breed new varieties with ideal architecture. In this study, we report mapping and characterization of a rice mutant defective in tiller angle. At the seedling stage, the newly developed tillers of the mutant plants grow with a large angle that leads to a “lazy“ phenotype at the mature stage. Genetic analysis indicates that this tillerspreading phenotype is controlled by one recessive gene that is allelic to a reported mutant la. Therefore, the mutant was named la-2 and la renamed la-1. To map and clone LA, we constructed a large mapping population. Genetic linkage analysis showed that the LA gene is located between 2 SSR markers RM202 and RM229. By using the 6 newly-developed molecular markers, the LA gene was placed within a 0.4 cM interval on chromosome 11, allowing us to clone LA and study the mechanism that controls rice tiller angle at the molecular level.  相似文献   

9.
10.
Genetic analysis and fine mapping of genes controlling leaf rolling were conducted using two backcrossed generations (BC4F2, BC4F3) derived from a cross between QMX, a non-rolled leaf cultivar as a recurrent parent, and JZB, a rolled leaf NIL of ZB as a donor parent. Results indicated that leaf rolling was mainly controlled by an incompletely recessive major gene, namely rl(t), and at the same time, affected by quantitative trait loci (QTLs) and/or the environment. A genetic linkage map was constructed using MAPMAKER/EXP3.0 with eight polymorphic markers on chromosome 2, which were screened by BAS method from 500 SSR markers and 15 newly developed insertion/deletion (InDel) markers. The position of rl(t) was estimated with composite interval mapping (CIM) method using WinQTLcart2.5. Gene rl(t) was mapped between markers InDel 112 and RM3763, and 1.0 cM away from InDel 112 using 241 plants in BC4F2 population. To fine map r(t), one BC4F3 line with 855 plants was generated from one semi-rolled leaf plant in BC4F2. Four new polymorphic InDel markers were developed, including InDel 112.6 and InDel 113 located between markers InDe1112 and RM3763. Based on the information of recombination offered by 191 rolled leaf plants and 185 non-rolled leaf plants from the BC4F3 line ,we mapped r(t) to a 137-kb region between markers InDel 112.6 and InDel 113. Homologous gene analysis suggested that r(t)was probably related to the process of leaf development regulated by microRNA.  相似文献   

11.
A rice male-sterile mutant OsMS-L of japonica cultivar 9522 background, was obtained in M4 population treated with ^60Co γ-Ray. Genetic analysis indicated that the male.sterile phenotype was controlled by a single recessive gene. Results of tissue section showed that at microspore stage, OsMS-L tapetum was retarded. Then tapetal calls expanded and microspores degenerated. No matured pollens were observed in OsMS-L anther locus. To map OsMS-L locus, an F2 population was constructed from the cross between the OsMS-L (japonica) and LongTeFu B(indica). Firstly, the OsMS-L locus was roughly mapped between two SSR markers, RM109 and RM7562 on chromosome 2. And then eleven polymorphic markers were developed for further fine fine-mapping. At last the OsMS-L locus was mapped between the two lnDel markers, Lhsl0 and Lhs6 with genetic distance of 0.4 cM, respectively. The region was delimited to 133 kb. All these results were useful for further cloning and functional analysis of OsMS-L.  相似文献   

12.
The phenomenon of panicle enclosure in rice is mainly caused by the shortening of uppermost internode.Elucidating the molecular mechanism of panicle enclosure will be helpful for solving the problem of panicle enclosure in male sterile lines and creating new germplasms in rice.We acquired a monogenic recessive enclosed panicle mutant,named as esp2 (enclosed shorter panicle 2),from the tissue culture progeny of indica rice cultivar Minghui-86.In the mutant,panicles were entirely enclosed by flag leaf sheaths and the uppermost internode was almost completely degenerated,but the other internodes did not have obvious changes in length.Genetic analysis indicated that the mutant phenotype was controlled by a recessive gene,which could be steadily inherited and was not affected by genetic background.Apparently,ESP2 is a key gene for the development of uppermost internode in rice.Using an F 2 population of a cross between esp2 and a japonica rice cultivar Xiushui-13 as well as SSR and InDel markers,we fine mapped ESP2 to a 14-kb region on the end of the short arm of chromosome 1.According to the rice genome sequence annotation,only one intact gene exists in this region,namely,a putative phosphatidylserine synthase gene.Sequencing analysis on the mutant and the wild type indicated that this gene was inserted by a 5287-bp retrotransposon sequence.Hence,we took this gene as a candidate of ESP2.The results of this study will facilitate the cloning and functional analysis of ESP2 gene.  相似文献   

13.
A rice initiation-type lesion mimic mutant (lmi) was identified, which was isolated from an indica rice Zhongxian 3037 through γ radiation mutagenesis. Trypan blue staining and sterile culture revealed that the mutant spontaneously developed lesions on the leaves in a developmentally regulated and light-dependent manner. Genetic analysis indicated that the lesion mimic trait was controlled by a single resessive locus. Using public molecular markers and an F2 population derived from lmi and 93-11, we mapped the lmi locus to the short arm of chromosome 8, nearby the centromere, between two SSR markers RM547 and RM331. The genetic distance was 1.2 and 3.2 cM, respectively. Then according to the public rice genomic sequence between the two SSR markers, lmi was further finely tagged by three CAPS markers: C4135-8, C4135-9 and C4135-10. And lmi locus was a co-segregated with marker C4135-10, providing a starting point for lmi gene cloning.  相似文献   

14.
Fine mapping of Helminthosporium turcicum resistance gene Ht2 is extremely valuable for map-based cloning of the Ht2 gene,gaining a better knowledge of the distribution of resistance genes in maize genome and marker-assisted selection in maize breeding.An F2 mapping population was developed from a cross between a resistant inbred line 77Ht2 and a susceptible inbred line Huobai.With the aid of RFLP marker analyses,the Ht2 gene was mapped between the RFLP markers UMC89 and BNL2.369on chromosome 8,with a genetic distance of 0.9cM to BNL2.369.There was a linkage between SSR markers UMC1202,BNLG1152,UMC1149 and the Ht2 gene by SSR assay,Among the SSR markers,the genetic distance between UMC1149 and the Ht2 gene was 7.2cM,By bulked segregant analysis 7 RAPD-amplified products which were probably linked to the Ht2 gene were selected after screening 450 RAPD primers and converted the single-copy ones into SCAR markers.Linkage analysis showed that the genetic distance between the SCAR marker SD-06633 and the Ht2 gene was 0.4cM.From these results,a part of linkage map around the Ht2 gene was constructed.  相似文献   

15.
In this study, Cry ⅠA(b) gene was successfully transferred into the biocontrol fungus Trichoderma harzianum with an efficiency of 60-180 transformants per 10^6 spores by using Agrobacterium tumefaciens-mediated transformation. Putative transformants were analyzed to test the presence of Cry ⅠA(b) gene by Southern blot. Most transformants contained a single T-DNA copy. RT-PCR analysis showed that the Cry ⅠA(b) gene was transcribed. Antifungal activities and insecticidal activities of the transformants were examined. There was no obvious difference in antifungal activities between the transformants and their wild strains. The modified mortalities of the transformants T1 and T2 were 69.57% and 91.30%, respectively. The tranformation system mediated by A. tumefaciens proved to be a powerful tool for the filamentous fungi transformation and functional genomic study with its high transformation frequency, simplicity of T-DNA integration, and genetic stability of transformants.  相似文献   

16.
17.
A narrow leaf mutant was obtained after T-DNA transformation conducted on a rice variety Zhonghua 11. Several abnormal morphological characteristics, including semi-dwarf, delayed flowering time, narrow and inward rolling leaves, and lower seed-setting, were observed. The rate of net photosynthesis (under saturate light) of flag leaves in the mutant was significantly lower than that of the wild type. Moreover, the leaf transpiration rate and stomatal conductance in the mutant flag leaf were lower than those of the wild type at the grain filling stage. It was found that the mutant phenotype was not caused by the T-DNA insertion. Genetic analysis showed that the mutant was controlled by a single recessive gene, designated as nal3(t). A genetic linkage map was constructed using a large F2 mapping population derived from a cross between nal3(t) and an indica variety Longtefu B with 6 polymorphic markers on chromosome 12 identified from 366 SSR markers by the BAS method. Gene nal3(t) was mapped between the markers RM7018 and RM3331. Fine mapping of nal3(t) locus was conducted with 22 newly developed STS markers based on the sequence diversity around the region harboring nal3(t) between Nipponbare and 93–11, and nal3(t) was finally mapped to a 136-kb region between the STS markers NS10 and RH12-8. Supported by National High Technology Research and Development Program of China (863 Program) (Grant No. 2006AA10A102), National Natural Science Foundation of China (Grant No. 30600349) and Natural Science Foundation of Zhejiang Province (Grant No. Y306149)  相似文献   

18.
新的矮秆基因的发掘、研究和利用对水稻育种和植物生长发育机制研究有重要的作用.用60Coγ射线辐照粳稻9522,获得一个能稳定遗传的突变体.该突变体表型为株高较野生型矮,叶片短而微卷.将该突变体与籼稻广陆矮杂交,F2代呈3∶1分离,说明该突变体受隐性单基因控制.通过InDel分子标记对F2代分离群体进行遗传定位,将该基因定位于第6染色体InDel标记OS604附近.随后又发展了多对有多态性的InDel分子标记,将该基因座位精细定位在InDel标记XL6-6和XL6-1之间,AP003490和AP005619上,两个引物之间的物理距离为118 kb.本研究为该克隆基因及其作用机理的探究奠定了基础.  相似文献   

19.
Flowers, fruits and seeds are products of plant re- productive development and provide the important sources of foods for humans. Therefore, the moleculargenetic mechanisms of floral development have been ahotspot of research of plant developmental biology[1]. Rice is one of the most important staple food crops. Theoutcome of its reproductive development would determine the yield and quality of grains. Rice is also a model plantof cereals. Hence, the study of rice reproductivedevelopment, esp…  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号