首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对于БЕРНшТЕИН[1]提出的逼近连续周期函数的求和算子Un(f;x)=1/(2n+1) sum from k=0 to 2n f(x_k)〔sin2/2(x-x_k)/sin(x-x_k)/2 〕~2,HATAHCOH[2]证明了它的收敛性.至于误差估计,本文得到:1)若f∈C2π,则|Un(f;x)-f(x)|≤(5+3/2π)ω(f,lnn/n)(n≥3),2)若f∈C2π且f∈Lipiα(0<π<1),则|Un(f;x)-f(x)|≤〔7/4+3/(1-α)〕(2π/2n+1)~α,3)若f∈C2π且f∈Lipil,|Un(f;x)-f(x)|≤15·ln(2n+1)/2n+1。  相似文献   

2.
设A1(z)是方程f″+P(z)f=0的非零解,其中P(z)是n次多项式,Aj(z)≠0(j=2,3…,k-1)是整函数,A0(z)是一个超越整函数且满足ρ(Aj)<ρ(A0)≤12,j=2,3…,k-1,那么方程f(k)+Ak-1(z)f(k-1)+…+A1(z)f'+A0(z)f=0的每一个非零解都是无穷级。  相似文献   

3.
运用Nevunlinna值分布理论和整函数的相关理论,研究了2类不同系数的2阶线性微分方程解的增长性.假设A(z)=h(z)eP1(z),其中P1(z)是m次多项式,h(z)是ρ(h)m的整函数,B(z)是1个级为ρ(B)≠m的超越整函数,证明了方程f″+Af'+Bf=0的每1个非零解都是无穷级;又假设A(z)是方程f″+P2(z)f=0的非零解,其中P2(z)是n次多项式,B(z)是Fabry缺项级数且2ρ(B)≠n+2,也证明了方程f″+Af'+Bf=0的每1个非零解都具有无穷级.  相似文献   

4.
摘要 设Q={f(z):f(z)=z-an+1zn+1-(∞∑k=n+2)akzk},这里an+1=c(n+2)/(n+1)(n+3),ak≥0,∞∑k=n+2k(k+2)/k+1ak≤1-c,0≤c≤1,n∈N,并且f(z)在单位圆盘△={z:| z |<1}内解析,得到函数族Q的极值点与支撑点.  相似文献   

5.
f(z)是一个亚纯函数,g(z)是f(z)的一个齐次微分多项式且f(z)与g(z)有相同的级。方程f(z)=0,f(z)=∞,g(z)=1的根分布在射线束;re~(iω)_1,re~(i(?))_1,…re~(iω)_(?)(r≥0,q≥1)上,并且δ(0,f)+δ(∞,f)+δ(1,g)>0。则f的级ρ必是有穷的,且 ρ≤β=sup{π/ω_2-ω_1,π/ω_3-ω_2,…,π/ω_(q+1)-ω_q} [ωq+1=2π+ω_1]  相似文献   

6.
研究了高阶线性微分方程f(k)+Ak-1(z)epk-1(z)f(k-1)+Ak-2(z)epk-2(z)f(k-2)+…+A0(z).ep0(z)f=0和f(k)+Ak-1(z)epk-1(z)f(k-1)+Ak-2(z)epk-2(z)f(k-2)+…+A0(z)ep0(z)f=F(z)解的增长性问题,其中pj(z)=ajzn+bj,1zn-1+…+bj,n,Aj(z)和F(z)是有限级整函数.针对pj(z)中aj(j=0,1,…,k-1)的幅角主值不全相等的情形,得到了方程解的增长级的精确估计.  相似文献   

7.
在方程系数A0的型起控制作用的条件下,研究了高阶非齐次线性微分方程f(k)+Ak-1(z)f(k-1)+…+A0(z)f=F(z)解的增长性,得到了上述微分方程解的增长级和零点的一些精确估计.  相似文献   

8.
考虑形如f(k)+Ak-1(z)f(k-1)+…+A1(z)f′+A0(z)f=0的整函数系数的线性微分方程解的性质.如果其中某个系数被一个指数函数所控制,则方程有穷级解f的导数的模必被一指数函数所控制.  相似文献   

9.
研究了高阶齐次线性微分方程f(k)+Ak-1(z)epk-1(z)f(k-1)+Ak-2(z)epk-2(z)f(k-2)+…+A0(z)ep0(z)f=0和f(k)+(Ak-1(z)epk-1(z)+Dk-1(z))f(k-1)+…+(A0(z)ep0(z)+D0(z))f=0解的增长性问题,其中,pj(z)=ajzn+bj,1zn-1+…+bj,n,Aj(z)和Dj(z)是有限级整函数.针对pj(z)中aj(j=0,1,…,k-1)的幅角主值相等的情形,得到了σ2(f)=n.  相似文献   

10.
研究了m >0为实常数 ,A(z)为有限级超越整函数且σ(A)≠ 1,F≠ 0为有限级整函数时 ,方程f(k) +emzf′ +Af=F解的增长级和零点收敛指数及其对应的齐次方程f(k) +emzf′+Af=0解的增长级和不动点收敛指数  相似文献   

11.
本文应用亚纯函数的Nevalinna值分布理论,研究一类非线性微分方程fnf(k)+P(z,f,f′,…,f(t))=(P1eα1z)+(P2eα2z)+(P3eα3z)的超越整函数解,得到f(z)1=(b1eα1z/(n+1)),其中b1满足b1n+1=(P1(n+1)k/α1k);对于i=1,2,3,αi在一条线上...  相似文献   

12.
研究了微分方程f~(k)+A_(k-1)f~(k-1)+…A_2f″+A_1e~(az~n)f′+A_0e~(bz~n)f=F解的增长性,其中A0(z)、A1(z)、F(z)是级小于n的整函数,A j(z)(j=2,3,…,k 1)是次数不超过m的多项式,a、b为非零复常数.证明了该方程的所有解f(z)满足(f)=λ(f)=σ(f)=∞,2(f)=λ2(f)=σ2(f)=n,至多除去2个例外复数b.  相似文献   

13.
研究了高阶微分方程f(k)+Hk-1f(k-1)+…+H1f′+H0f=0解的增长性,其中Hj(z)=hj(z)ePj(z)(j=0,1,…,k-1),Pj(z)为n次多项式,hj(z)为整函数,且σ(hj)相似文献   

14.
某类二阶微分方程解的增长级及零点   总被引:3,自引:3,他引:0  
研究了P(z) =-mzn+an -1zn -1+… +a0 ,m >0为实常数 ,A(z)为超越整函数时 ,方程f″ +eP(z) f′+A(z)f=F与对应齐次方程f″+eP(z) f′ +A(z)f=0的解的增长级和零点收敛指数 .  相似文献   

15.
证明存在非常数多项式P1(z) =ζ1zn+… ,P2 (z) =ζ2 zn+…和级小于n的整函数Q ,0 <ζ2 / ζ1<1使方程 f″+(eP1(z) +eP2 (z) +Q) f =0有非平凡解 f满足λ(f)≤n .回答了K .Ishizaki提出的问题  相似文献   

16.
假设f(z)是超越亚纯函数,其级σ(f) =σ<1.利用了Nevanlinna理论的基本方法,研究了差分函g(z)=f(z+c1)f(z+c2)f(z+c3)-f3(z),以及差商函数G(z)=g(z)/f3(z)的零点及零点收敛指数问题,证明了λ(g)=σ(g)=σ和λ(G)=σ(G)=σ.  相似文献   

17.
证明了(0,p(D))三角插值多项式Rn(x)的s(s=0,1,…,q)阶导数一致收敛于函数f(x)的s(s=0,1,…,q)阶导数:设f(x)∈C2π,f(x)具有q阶连续导数,且f(q)(x)∈Lipα.0<α<1,若βk=Op(in)n(n)-f(s)(n)=Olnnnq+α,(k=0,1,2,…,n-1),则R(s)nq-s+α(s=0,1,…,q).  相似文献   

18.
考虑一类差分Painlev$\\acute{e}$ $I$方程 $ \\overline{f}+f+\\underline{f}=\\frac{\\pi_1 z +\\pi_2}{f}+\\kappa_1\\eqno{(*)} $ 有限级超越亚纯解的零点、极点、不动点和Borel例外值, 同时也给出了差分Painlev$\\acute{e}$ $I$方程(*)的有理函数解的存在性及其表示形式, 其中$\\overline{f}=f(z+1), f=f(z), \\underline{f}=f(z-1), \\pi_1 , \\pi_2 , \\kappa_1 \\in\\mathbb{C}$.  相似文献   

19.
本文主要研究了全纯函数的差分算子分担一个值的唯一性问题,并且得到了:若f与g为超级ρ2<1的两个非常数的超越全纯函数, n,k,m为满足n≥5k+4m+13的整数, c是满足f(z+c)-f(z)≠0且g(z+c)-g(z)0的非零常数,则若f(z)n(f(z)m-1)(f(z+c)-f(z))(k)与g(z)n(g(z)m-1)(g(z+c)-g(z))(k)IM分担1, 则f=tg, 其中t为满足tn+1=1与tm=1的常数.  相似文献   

20.
首先证明,L~2[0,2π]中(f,g)=1/πintegral from n=0 to2πf(x)(?)dx,||f||=(1/πintegral from n=0 to2π|f(x)|~2)dx~(1/2),三角函数系F_1={1/2~(1/2),cosX,SinX,…,CosnX,SinnX,…}是完全就范直交系。证:设SpanF_1为形如sum from k=0 to n(a_kcoskx+b_ksinkx)的三角多项式的全体。C_(2π)为以2π为周期的连续函数的全体,则据Weiestrass逼近定理,对(?)ε>0,f∈2π,(?)T(x)=sum from k=0 to N(a_kcoskx+b_ksinkx)使(?)|f(x)-T(x)|<ε  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号