共查询到20条相似文献,搜索用时 0 毫秒
1.
尽管深度神经网络算法在标签自动标注领域已取得一定的成果,但对于包含大量噪声标签的真实音乐数据集仍存在自动标注效果差的问题.为此,文中通过对音乐标签进行表示学习,挖掘音乐标签与音频特征之间的潜在关系,提出了基于标签深度分析的音乐自动标注算法.该算法先通过多层级卷积网络提取音频特征,再通过音乐标签向量的表示学习来降低噪声数据对音乐自动标注网络的不良影响.在真实音乐标注数据集上的实验结果表明,该算法能取得更高的平均受试者特征曲线下面积,标注效果优于其他自动标注算法. 相似文献
2.
流标签是当前多标签学习领域中一个较新颖的挑战性问题,存在标签空间未定、标签数量不断增加甚至趋于无穷等问题.在多标签学习的特征选择中,每当有新的标签到达时标签空间都将发生改变,传统的多标签特征选择算法需重新进行特征选择,所以不适用.针对此问题,采用将流标签进行分组批量处理的方式,并考虑标签之间的相关性,提出一种新的流式多标签特征选择方法,考虑分组后每组标签内部潜在的关联结构和不同标签组之间的标签差异性,赋予每组标签不同的权重来计算每个特征与标签空间的模糊互信息.同时,结合mRMR (Max-Relevance and Min-Redundancy)的特征选择策略进行冗余特征的剔除,从而挑选最优的特征子集.该方法同时适用于固定标签空间和流式标签空间中的特征选择问题.最后,选取八个多标签基准数据集,采用四种评价指标与已有相关的多标签特征选择方法进行对比实验,实验结果证明了提出方法的有效性和高效性. 相似文献
3.
《云南民族大学学报(自然科学版)》2019,(1)
稀疏表示模型是通过将字典中的原子进行组合得到期望的结果.为了解决传统字典学习中所有图像块重建均使用同一个字典,从而忽略了最佳稀疏域的问题,提出来一种基于多字典和稀疏噪声编码的图像超分辨率重建算法.在字典训练时,利用图像的特征将它们合理地划分成若干个簇,每个聚类训练生成子字典对,利用最佳字典对进行重建.在求解稀疏系数阶段,引入稀疏编码噪声去除噪声的影响,利用图像非局部自相似性来获得原始图像稀疏编码系数的良好估计,然后将观测图像的稀疏编码系数集中到这些估计当中.实验表明,与ASDS算法和SSIM算法相比较,该算法有更好的重建结果,获得了更丰富的图像细节和更清晰的边缘. 相似文献
4.
针对标签特定特征多标签学习算法(multi-label learning with label-specific features, LIFT)未能在聚类以及分类阶段考虑标签相关性问题,提出一种基于标签相关性的标签特定特征多标签学习算法(multi-label learning with label-specific features via label correlations, LFLC).将标签空间加入特征空间进行聚类构建分类模型,采用考虑标签相关性的聚类集成技术为每个标签构造标签特定特征,使用相关性矩阵构建无向完全图并挖掘图中标签集合相关性,通过树集成表达标签间多种不同结构的强相关性.在试验部分,采用涵盖不同领域的10个数据集,以Hamming Loss、Ranking Loss、One-error、Coverage、Average Precision和macroAUC为评估指标,进行了参数敏感性分析和统计假设检验.结果表明:结合聚类集成与标签间强相关性的LFLC算法较其他对比多标签算法整体上能取得较好的效果. 相似文献
5.
在众多社区挖掘算法中,标签传播算法因为接近线性时间复杂度被广泛应用,但其也存在大量随机性,稳定性差的问题,采取一种新型的多标签策略解决重叠社区挖掘问题,并根据节点度减少初始标签赋予量的方法提升了算法的稳定性. 相似文献
6.
7.
多标签流形学习(multi-label manifold learning, ML$^{2}$)基于特征流形构建标签流形, 将标签逻辑值转换为实数值, 能更好地反映标签相关性, 提高分类性能. 但是, ML$^{2}$ 与多数多标签分类方法一样, 是基于数据的全部特征进行标签预测, 没有考虑不同特征对不同类别标签的鉴别能力. 因此, 提出一种基于类属特征的多标签流形学习分类(label specific feature based multi-label manifold learning, LSF-ML$^{2}$)方法. 首先, 利用标签数据优化类属特征重要度矩阵, 确定类属特征子集; 再将子集的特征流形映射到标签空间, 使标签从离散型变为数值型; 最后, 通过多输出回归实现分类. 实验结果表明, 所提方法性能优于多种多标签分类方法. 相似文献
8.
利用关系分类模型,将标签之间的相关性以及特征对标签相关性的影响形式化为分数模型,通过要求模型能够区分真实数据和噪声数据的得分建立了基于张量网络的多标签分类模型.多个数据集上的实验表明,相较于传统多标签学习方法和已有考察标签相关性的多标签学习方法,本文方法在平均精确度和错误率等多标签评价指标上提升近一倍,且拥有更低的计算成本. 相似文献
9.
《信阳师范学院学报(自然科学版)》2016,(2):261-264
针对字典学习l0或l1范数的稀疏约束导致训练和测试阶段较高的复杂性,提出用于人脸识别的字典投影学习算法.该算法合成和分析字典,达到信号表示和分类.实验结果表明,与传统的DL方法相比,所提出的DPL方法大大降低了训练和测试阶段的时间复杂度;与KNN算法相比,具有较高的识别精度和较好的稳定性. 相似文献
10.
在医疗诊断中,稀疏采样能减少CT扫描过程中辐射对患者的伤害.但直接对稀疏采样后的投影数据进行重建,会使CT重建后的图像出现失真、伪影等问题.为保证低采样率下重建图像的质量,提出了双字典自适应学习算法,参照Sparse-Land模型的双字典学习框架,将K-SVD算法与双字典学习算法框架相结合得到补全投影数据,利用FBP算法进行重建得到高质量的重建图像.实验结果表明,在低采样率下使用所提方法进行CT重建的图像质量优于COMP双字典学习算法和MOD双字典学习算法,并且此方法有效提高了CT图像重建在低采样率时的性能. 相似文献
11.
如何有效地挖掘变量与标签之间的相互关系和处理高维数据是自动图像标注的两个具有挑战性的问题。以往的自动图像标注都是基于向量模式的学习算法,这样一方面产生高维数据,另一方面破坏了图像数据的高阶结构和内在相关性,导致信息丢失。向量模式下的罚偏最小二乘算法(penalized partial least square,PPLS)可以在获取变量和标签相关性的同时,进行维度约简。在PPLS的基础上,提出基于张量罚偏最小二乘算法(tensor-PPLS)。首先构造图像的张量数据形式,然后采用多线性主成分分析(MPCA)进行降维预处理,最后用tensor-PPLS进行图像标注。在图像标注的三个标准数据集上,提出的算法标注结果明显优于传统的基于向量模式的学习算法。 相似文献
12.
13.
14.
随着个人计算机和互联网上数字图像数量的快速增长,用户越来越多借助于"语义概念"来检索感兴趣图像。然而由于图像底层特征刻画和高层语义概念描述间存在很大的差异,使得现有图像标注算法性能不甚理想。因此,文中提出基于多模态深度学习的图像标注框架,旨在应用卷积神经网络技术优化深层神经网络的参数,提高标注精度。具体地,文中提出的多模态深度学习标注框架利用两阶段学习,优化神经网络参数:(1)利用深度神经网络,优化各单模态参数;(2)利用相关性,实现多模态的最优组合。公共数据集的实验表明,该方案可以有效地提高图像标注的性能。 相似文献
15.
分析了字典学习的K-SVD算法,通过引入K-Means计算方法,将K-Means方法推广到用于字典学习的K-SVD计算方法中;分析和描述了K-SVD计算过程,指出了K-SVD方法与K-Means方法之间的关系,最后观察图像数据训练用于稀疏表示的字典. 相似文献
16.
在多标签分类的相关研究中,由于现有的基于网络表示学习算法的相关方法只利用了网络中节点之间的邻接领域信息,而没有考虑到节点之间的结构相似性,从而导致分类准确性较低,因此,本文提出一种基于深度自动编码器的多标签分类模型。该方法首先利用轨迹计算算法(Orca)计算不同规模下网络中节点的结构相似性,作为深度自动编码器的输入来改进隐藏层中的向量表示,保留网络的全局结构;然后利用节点的邻接领域信息在模型中进行联合优化,从而能有效地捕捉到网络的高度非线性结构;最后根据隐藏层得到节点的向量表示,利用支持向量机对节点进行多标签分类。验证实验采用3个公开的网络数据集,实验结果表明,与基准方法相比,本文方法在多标签分类任务中能取得更好的效果。 相似文献
17.
为了探索多标签数据集中每个标签所具有的特定特征,针对标签特定特征进行有效的利用,提出基于聚类提升树的多标签学习方法(multi-label leaning based on boosting clustering trees,MLL-BCT).建立MLL-BCT整体框架,通过引入聚类特征树来挖掘数据样本之间的相关性,以... 相似文献
18.
提出一种融合视觉特征及标签一致性的多标签图像标注方法VTC-KSVD.首先通过K均值奇异值分解(KSVD)法建立图像的标签一致性模型TC-KSVD,然后将多视图特征融合在该模型中.该方法既利用了训练样本的类标与编码系数的判别式模型,又利用了训练样本的标签与编码系数的关系,增加了字典的判别性,提高了标注性能.在Corel5K数据集上的实验结果表明,融合了多视图视觉特征与标签一致性的VTC-KSVD方法可以较为准确地找到视觉特征与语义特征均相似的图像近邻,能明显提升多标签图像的标注性能,并能有效缓解训练数据有限而引起的稀疏性问题. 相似文献
19.
以学科教材术语语料库建设为目标,实现了一种基于底表的多层扫描术语自动标注算法.该算法首先采用预测性规则模板扫描文本中未登录术语,并进行标注;其次采用最大匹配方法识别出每个可能的候选术语,把每个候选术语看作术语的定位点,扫描其上下文语境,分别调用单位术语规则模板、例外规则、部件规则、部件例外规则、例外校正规则等对扫描结果进行判断,确定候选术语的身份,并进行标注.该方法以规则的预测和限定功能为辅,充分利用了底表术语信息,取得了较高的标注准确率和召回率,开放测试F-指数达到了84%左右. 相似文献
20.
基于粗糙集的多标签文本分类算法 总被引:1,自引:1,他引:0
将粗糙集优越的约简理论应用于多标签文本分类,提出了基于粗糙集理论的多标签文本分类算法,该算法利用训练阶段得到的各个类别的分类规则与测试实例逐一匹配,得出实例的类标签集合,扩展了粗糙集理论在文本分类中的应用,实验证明算法有效可行. 相似文献