首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
土压平衡盾构中顶进推力的计算分析   总被引:1,自引:1,他引:0  
针对土压平衡盾构开挖过程中顶进推力难以确定的问题。采用理论计算与数值拟合相结合的方法,计算土仓和掘进面的等效压力,从而推导出隧道开挖所需的顶进推力。以实际工程为背景,利用ABAQUS在该顶进推力作用下地表沉降规律。结果表明:①该土仓与掘进面压力的计算方法适用于卵石地层;②盾构推进力为110 000 N时,开挖较为稳定;③监测与模拟的地表沉降值较为接近,两者之差小于2 mm。该研究对卵石地层中的盾构开挖具有一定的指导意义。  相似文献   

2.
为了了解合肥典型地层双线盾构近接下穿对高铁桥群桩的影响,以合肥地铁3号线盾构隧道施工近距离穿越高铁桥桩基群工程为例,利用有限元分析软件对盾构施工的全过程进行三维动态模拟,通过分析盾构施工过程中桩身横向位移、弯矩、轴力分布等变化规律,研究了双线盾构近接下穿对高铁桥群桩的扰动规律。结果表明:盾构隧道施工在穿越桩基础群时,距离盾构掌子面较近的桩受到的影响明显大于较远位置的桩;当盾构掌子面推进到与桩群相交处时产生的施工扰动最大;桩基础在盾构中心线上下一倍洞径深度范围内所受到的盾构施工扰动影响最大,桩身轴力和弯矩明显大于其他部位;且双线盾构隧道的后施工隧道的开挖使得先施工隧道周围桩基受到的扰动幅度得以降低。  相似文献   

3.
以盾构下穿某高速铁路简支梁桥为工程背景,运用有限元软件Midas/GTS建立盾构隧道先后下穿高铁桥梁模型,分析盾构下穿时列车荷载作用下高速铁路简支桥梁动力响应。研究首先分析了当盾构开挖至桥梁近侧,列车以不同速度200~350km.h-1、不同轴重110~220kN运行时对高速铁路简支梁桥墩顶沉降的影响。接着探讨在不同开挖阶段下,速度200 km.h-1轴重110kN的列车动荷载冲击下高铁桥梁墩台顶变形规律。结果表明:盾构开挖至桥梁近侧时,不同速度、轴重列车荷载冲击下,高铁桥梁墩台顶的变形规律基本一致,其沉降在一定时间达到峰值,其后迅速降低并稳定在某一波动范围内;随着列车速度与轴重的增加,墩台顶沉降峰值越大;盾构开挖时,列车时速低于200 km.h-1、轴重小于110kN时其墩台顶沉降峰值当满足高铁桥梁单墩顶竖向沉降控制标准,与列车速度相比,列车轴重对桥梁的动力响应影响更大;列车动荷载作用下,盾构隧道开挖对高铁桥梁墩顶变形的影响主要为盾构开挖至桥梁近侧的初开挖阶段,盾构开挖远离桥侧后墩顶变形基本处于稳定状态。  相似文献   

4.
盾构开挖近距离侧穿既有桩基的问题值得关注。采用两阶段位移法,提出了近距离盾构开挖对侧向桩基影响的简化计算方法。以典型工程实例为背景,计算桩基受影响规律,且与三维数值计算结果对比分析。结果表明:盾构开挖引起侧向桩基最大水平位移为4.25 mm,相应弯矩和剪力最大值分别为1 176.09 k N·m、505.1 k N。桩受盾构开挖影响范围可以通过45°+φ/2的角度扩散计算确定。与数值计算结果对比分析表明,文章提出的计算方法可行,可用于预测盾构开挖引起紧邻既有桩基的扰动。  相似文献   

5.
为了研究地铁基坑开挖过程中围护结构的安全性,以广东省某地铁车站为工程实例.介绍了基坑开挖方法,利用MIDAS/GTS对基坑开挖过程进行了模拟,并与不同工况下的桩身位移变化和支护轴力监测进行了比较.结果表明,围护桩顶和桩底位移较小,围护桩的最大位移位置随开挖深度的变化而移动,最大位移位置逐渐下降,最大位移接近第三梁内支撑的顶部.模拟轴力结果显示:标准段距离盾构井约50 m内冠梁呈受拉状态.模拟和现场轴力监测数据显示:第一道标准段内支撑轴力大于盾构井内支撑轴力,随着开挖深度的增加,轴力最大值内支撑位置也在下移,最终出现在盾构井第三道内支撑上.  相似文献   

6.
敞口式盾构在砂层掘进时会扰动周围土体,易引起地层坍塌.以北京地铁6号线2期敞口式盾构施工段为工程背景,阐述了国内首台挤压式敞口盾构机机体构造及开挖工序,通过地表沉降和地中水平位移监测,研究了盾构掘进对砂层的扰动特征.结合盾构掘进参数分析,探讨了减少土体扰动的控制措施.研究表明,盾构接近测孔区阶段,土体变形规律最复杂;通过和刚脱离测孔区阶段是土层变形控制的重要环节;盾构隧道轴线两侧1.5倍洞径范围内是土体扰动主要区域.所得结论可为砂土地层敞口式盾构施工地层位移控制提供可鉴参考.  相似文献   

7.
目的研究分析不同开挖阶段双排桩支护体系位移、应力、应变变化规律,为基坑支护设计的优化、施工提供了有效的理论依据.方法通过Midas GTS有限元数值分析法,对不同开挖阶段,双排桩支护结构位移、受力情况进行分析,得到在不同的开挖阶段双排桩支护体系的位移、受力特征.结果基坑开挖后双排桩支护结构桩顶水平位移最大,随着双排桩支护结构深度的增加,位移逐渐减小,第一、二次开挖后前排桩最大位移值为1.058 mm、42.5 mm,第一、二次开挖后后排桩最大位移值1.062 mm、42.5 mm,前排桩比后排桩值偏大;基坑开挖后,基底处剪切应力最大,双排桩支护结构桩顶、基底处弯矩值较大.结论基坑开挖后,双排桩支护结构桩顶水平位移最大,随着双排桩支护结构的深度的增加,位移逐渐减小,且前排桩位移值比后排桩位移值偏大;随着基坑开挖深度的加深,桩底处弯矩逐渐减小,最大弯矩处逐渐上移,桩顶位置值显著增大,前后排桩弯矩值变化是一致.  相似文献   

8.
采用两阶段方法简便地研究盾构隧道开挖引起的邻近群桩竖向位移。第1阶段,采用Loganathan公式计算盾构隧道开挖引起的桩基轴线处土体竖向位移。第2阶段,首先基于Winkler地基梁模型,将土体位移转化为荷载施加到桩基上;然后,结合叠加法,计算盾构隧道开挖引起的邻近单桩竖向位移;最后,考虑群桩间的土体遮拦效应,再结合叠加法求解出盾构隧道开挖引起的邻近群桩竖向位移。通过与有限元模拟结果进行对比,验证本文所提计算方法的准确性,并进一步分析各物理参量变化对群桩竖向位移的影响。研究结果表明:其余参数不变的情况下,隧道埋深和地层损失比增大均会增强盾构隧道开挖对邻近群桩的影响,导致邻近群桩的竖向位移增大;桩基直径增大导致其抵抗盾构隧道开挖影响的能力增加,进而引起邻近群桩的竖向位移略微减小;土体弹性模量增加导致邻近群桩顶端所受的向下荷载与底端所受的向上荷载均增加,进而引起邻近群桩的顶端竖向位移(最大位移)增大,底端竖向位移减小;桩基与隧道距离增加可减弱盾构隧道开挖对邻近桩基的影响,减小桩基竖向位移;群桩间距增大可引起桩基间的土体遮拦效应减弱,导致桩基的相对竖向位移增大。  相似文献   

9.
利用PLAXIS 3D软件和软土蠕变模型,建立某市政道路下穿市域铁路桥梁基坑工程的三维数值模型,通过与实测数据的对比验证模型的合理性. 将软土蠕变模型退化为软土模型,考虑桩顶约束条件,对比分析桥梁群桩的时效水平响应. 结合两阶段法,将数值计算得到的土体自由场时变沉降作为“外荷载”作用于桩基,利用考虑桩土往返剪切的荷载传递方法,计算桩身自重、桩顶荷载和后续近接工程基坑开挖作用下桩基的竖向力学响应. 结果表明:1)土体蠕变对邻近桥梁群桩变形、内力的影响较大,甚至不亚于墙体瞬时变形的影响;2)桥梁群桩桩身的变形、内力与离开坑壁的距离呈负相关,并表现出群桩的遮帘作用,桩顶的变形、内力则由桩顶约束条件决定;3)对于桩顶承受荷载不大以及后续受近接工程基坑开挖扰动不大的深厚软弱地层中的桥桩桩基,在以桩顶变形为控制目标时,存在合理桩径和合理桩长.  相似文献   

10.
基于盾构开挖侧穿邻近桩基引起桩-土相互作用的实际工况,提出了一种可预测桩基水平变形的简化计算方法. 采用两阶段法获得盾构开挖引起邻近桩基水平位移简化计算方法,第一阶段采用Loganathan公式计算盾构开挖引起邻近桩基轴线处土体自由水平位移场;第二阶段把桩基简化成 Euler-Bernoulli 梁放置在 Vlasov 地基模型上,建立桩基水平位移控制方程,结合桩基两端约束情况,采用差分法获得邻近桩基的水平位移矩阵解. 随后考虑群桩之间的土体遮拦效应,进一步获得邻近群桩的水平变形差分解 . 通过与两个既有工程案例实测以及既有地基模型计算结果对比,验证了本文方法的优越性. 群桩参数分析表明:地层损失率及隧道埋深的增大均会引起邻近群桩水平位移的增大,但桩身产生最大位移处会随着隧道埋深增加而增大;桩隧之间间距的增大会引起邻近群桩水平位移的减小,但其减小速率逐渐变缓.  相似文献   

11.
针对苏州轻轨1号线盾构隧道的施工情况,采用三维有限元数值模型,研究盾构施工对不同刚度及边长桩基的影响.结果表明:当盾构施工时,不同刚度桩身均偏向隧道移动,隧道轴线处的横向位移均最大.桩身横向位移最大值、竖向位移均随桩身刚度增大而变小,而且桩顶的竖向位移均大于桩底的竖向位移;当桩身弹性模量大于10GPa时,桩身竖向沉降减小不明显.随着桩身边长的逐渐增大,盾构施工引起的桩身最大横向位移、竖向位移、桩顶与桩底的竖向位移差均逐渐减小.盾构施工时应当监控桩基隧道轴线处横向位移及竖向沉降.  相似文献   

12.
针对盾构竖井内开挖深基坑时出土作业面小、基坑深度大等特点,提出一种装配式钢管混凝土(PCFT)内支撑结构.该PCFT内支撑结构由双肢矩形钢管轻集料混凝土构件和锚固件通过高强螺栓装配而成.以北京地铁17号线某盾构竖井深基坑工程为背景,开展PCFT内支撑基坑支护设计及应用.对支撑轴力、围护桩变形、桩顶位移和地表沉降进行了信息化监测,并在工程实践中总结和优化PCFT内支撑设计及施工技术.实施效果和监测结果表明:PCFT内支撑架设施工技术简便易行,在有效控制基坑稳定和周边环境安全的基础上,极大地提高了盾构竖井深基坑工程施工安全性和便利性.  相似文献   

13.
针对盾构隧道开挖对邻近桩基础的影响这一城市地下交通隧道建设中的难题,首先对盾构隧道开挖的三维数值模拟方法进行了探讨,此基础上分析了当隧道与邻近单桩基础之间相对位置不同时,隧道开挖对桩的影响及其规律,并与已有的现场监测及模型实验结果进行了对比,对其机理进行了探讨.研究表明:桩的端承力和侧摩阻力的变化趋势和隧道位置密切相关...  相似文献   

14.
以盾构隧道下穿某建筑物为例,进行了地表位移监测及结构物损伤评价。通过监测结果及结构鉴定评价分析了地面建筑物产生变形的原因。由于该住宅楼桩基底埋置深度为16.3m左右,盾构隧道顶距该住宅楼桩底最近距离约为6m,盾构下穿时,对建筑物桩基下卵石层产生扰动,使得基础不均匀沉降引起上部结构墙体产生沉降裂缝。针对基础沉降,提出采用注浆加固隧道顶至桩基底上5.0m范围内的土体,并论证了可行性。  相似文献   

15.
基于管幕-箱涵顶进工法施工的数值仿真模型,对涵洞斜穿铁路线施工过程中的地层变形规律进行分析,提出采用"有线仪器导向,一次性跟管钻进法"技术和控制箱涵顶进轴线位置、顶进速度和顶进力等地层沉降控制措施,并对箱涵顶进过程中的地层沉降进行现场监测.结果表明:管棚的沉降主要发生在开挖面前段10m范围内;管幕-箱涵施工过程中地层变形主要是由管棚和箱涵对土体的挤压扰动引起的;本文提出的地层沉降控制措施可将沉降控制在15mm以内.  相似文献   

16.
依托某盾构穿越工程,建立了盾构同时穿越桩基和多条隧道的数值模型并进行了验证。总结了盾构穿越诱发的地表沉降、既有隧道收敛和桩基变形规律,探明了既有桩基对扰动传递的隔断效应,并通过土体应力路径分析揭示了 桩?土?隧相互作用机制。结果表明:桩基的存在减小了隧道施工引起的地表沉降和沉降槽宽度,改变了既有隧道的变形模式,对扰动传递具有明显的隔断效应;受既有隧道和盾构施工的双重影响,两者间桩基承台的横向倾斜出现多个变形阶段,桩身上部出现较大的横向位移,而桩底位移较小;桩基、隧道和土体的刚度差异是桩?土?隧间复杂相互作用的根本原因。  相似文献   

17.
基于某跨越地铁超高层建筑的设计实践,采用Mohr-Coulomb屈服准则,利用ABAQUS建立三维有限元数值模型,研究地铁隧道穿越建筑物基础时对桩筏基础变形和内力的影响,并根据数值计算结果对经验方法的设计进行优化。数值分析结果表明:开挖增大了筏板的弯矩;隧道开挖会引起附近群桩向隧道方向挠曲变形,且前排桩的变形大于后排桩的变形,同一排桩中边桩变形大于中桩变形;隧道开挖对桩的桩身轴力、弯矩及水平变形的影响主要发生于桩顶至3倍隧道埋深的桩身范围内;随着盾构掘进正面推力和径向压力的增大,桩身挠曲变形逐渐减小并最终使桩身发生远离隧道方向的挠曲变形。  相似文献   

18.
深基坑双排桩支护排距室内模型试验研究   总被引:1,自引:0,他引:1  
为了研究深基坑双排桩支护结构最佳排距及支护结构内力,分别对2D、3D、4D和5D(D为桩径)4种排距的双排桩支护结构进行室内模型试验,通过千斤顶在基坑顶加压模拟荷载,不同开挖深度下,测量模型桩身内力大小及桩顶位移的变化.分析排距和开挖深度对双排桩支护结构的影响,包括前后桩正负弯矩大小、差值、桩顶位移等,得出双排桩支护结构的最佳排距.研究表明:双排桩支护排距变化,对桩弯矩及桩顶位移影响均较大,且双排桩排距的变化对后排桩的内力影响明显大于前排桩,对正弯矩的影响小于对负弯矩的影响;开挖深度对桩顶位移影响较大,对正弯矩的影响大于负弯矩,深度位移曲线近似为过原点的二次曲线,基坑底以上为正弯矩,坑底下为负弯矩,3D排距时桩顶位移最小,4D排距时正弯矩最大.  相似文献   

19.
穿越不同建(构)筑物的地铁盾构选型与控制   总被引:1,自引:0,他引:1  
结合上海市穿越不同建(构)筑物的地铁盾构工程实践,对盾构分别穿越运营地铁隧道、危旧敏感建筑物、浅基建筑群和桩基础时的盾构选型、微扰动控制参数以及相关应力与变形规律等进行了分析.在盾构掘进引起的动态位移场条件下,提出了盾构选型及其施工参数的控制方案;另外,在分析盾构穿越桩基础时桩端应力分布的基础上,提出了控制桩端距离的建议.  相似文献   

20.
为了研究盾构掘进过程对周边桩基础内力的影响,结合苏州轻轨1号线玉山公园与苏州乐园盾构隧道区间的施工情况,采用三维有限元数值模型,研究盾构施工过程对单桩内力的动态影响.结果表明:在盾构施工过程中,侧桩的轴力均呈现桩顶和桩底处小、隧道轴线处最大的特点,侧桩的轴力和弯矩随盾构的不断逼近而变大,且最大负弯矩大于最大正弯矩;同时侧桩越长,桩身轴力也越大,不同长度侧桩的弯矩均在隧道轴线处最大.在盾构从正下方穿越单桩的施工过程中,桩身轴力均呈现中间小、两端大的特点,最大弯矩均出现在桩身中点附近.当盾构切削面到达正上方单桩时,桩变长后,桩身部分截面的轴力由压力变为拉力,桩身弯矩均在桩中点附近处达到最大值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号