首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
一种基于网格的层次聚类算法   总被引:1,自引:0,他引:1  
传统的凝聚层次聚类算法的时间复杂度为O(n3),由于时间复杂度太高而无法应用到大的数据集.针对这一问题,提出了一种新的基于网格的层次聚类算法,先用基于网格的方法进行一次微聚类,然后再用凝聚的层次聚类算法进行聚类.在进行凝聚的层次聚类时,提出了一种新的簇间距离度量方法,该方法采用簇中权值最高的代表点的最小距离作为簇间的距离.理论分析和实验结果表明,基于网格的层次聚类算法比传统的凝聚层次算法具有更高的效率和正确性.  相似文献   

2.
罗静  刘宗歧 《科技信息》2011,(13):366-367
本文阐述了数据挖据的一些主要的方法和技术,详细介绍了基于网格的聚类技术,采用foodmart数据库作为算法输入的数据集,应用基于网格距离的聚类算法的实现对电力营销中客户的购买行为进行了聚类和预测,并验证了算法的正确性和有效性。  相似文献   

3.
聚类算法是数据挖掘中的核心技术 ,虽然聚类算法已被广泛深入的研究 ,但其应用在数据挖掘领域时间不长 ,其间产生了许多不同的适用于数据挖掘的聚类算法 ,但这些算法仅适用于特定的问题及用户 .为了更好的使用这些算法 ,综合提出了评价聚类算法好坏的 5个标准 ,基于这 5个标准 ,对数据挖掘中近几年提出的常用聚类方法作了比较分析 ,以利于人们更容易、更快速的找到一种适用于特定问题的聚类算法  相似文献   

4.
聚类算法是数据挖掘中的核心技术,虽然聚类算法已被广泛深入的研究,但其应用在数据挖掘领域时间不长,其间产生了许多不同的适用于数据挖掘的聚类算法,但这些算法仅适用于特定的问题及用户.为了更好的使用这些算法,综合提出了评价聚类算法好坏的5个标准,基于这5个标准,对数据挖掘中近几年提出的常用聚类方法作了比较分析,以利于人们更容易、更快速的找到一种适用于特定问题的聚类算法.  相似文献   

5.
一种基于密度和网格的高效聚类算法   总被引:1,自引:0,他引:1  
聚类已成为数据挖掘的主要方法之一,能够帮助人们在大量的数据中发现隐藏信息.目前最具典型的密度聚类算法是DBSCAN(density-based spatial clustering of applications with noise),它能够在空间数据库中很好地发现任意形状的簇并有效地处理噪声,但是它的计算复杂度相对较大.因此,采用划分数据集和聚簇合并方法,提出了一种基于密度和网格的高效聚类算法DGCA,并通过人工合成数据集和真实数据集对该聚类算法进行理论验证.实验结果表明该算法在效率性能和质量方面比DBSCAN都得到了提高.  相似文献   

6.
为了处理网络日志规模过大及其相关问题,根据TCP传输协议的特征,提出一种基于网格的TCP网络日志二次聚类算法(Grid-based TCP Two-step Clustering,GTTC).通过分析TCP连接过程,采用划分网格的方式把每一条TCP报文日志进行网格内初次聚类,再把初次聚类簇进行网格间二次聚类,最后生成表...  相似文献   

7.
数据挖掘是近年来非常热门的研究方向。聚类分析是数据挖掘的一个重要研究领域。本文归纳总结了数据挖掘中传统聚类算法,并对现今新发展的,比较热门的聚类算法进行了介绍。  相似文献   

8.
臧少杰 《科技信息》2007,(30):75-75,74
聚类算法是数据挖掘的核心技术,本文提出了评价聚类算法好坏的标准,基于这个标准,对数据挖掘中常用聚类算法作了比较分析,以便于人们更容易、更快捷地找到一种适用于特定问题的聚类算法。  相似文献   

9.
针对传统网格聚类算法聚类精度不高的缺点,把高密度单元格的网格平均密度作为密度阀值,将簇边界点从低密度网格单元中提取出来。算法即保留了网格算法运行速度快的特点,有提高了聚类结果的质量。  相似文献   

10.
DBSCAN方法是一种典型的基于密度的聚类算法,因此该方法具有可以发现任意形状的类的特点,但其聚类的效率并不是很高.如果考虑将传统的网格技术引入到DBSCAN聚类算法中,虽然一定程度上会提高聚类的效率,但其聚类的质量显得较为粗糙.文章通过引入自适应网格技术,使得DBSCAN聚类算法的效率和质量都有所提高.对比数值实验表明,基于自适应网格的DBSCAN聚类算法的聚类效果是良好的.  相似文献   

11.
聚类算法是数据挖掘领域中一个非常重要的研究方向.至今为止人们已经提出了许多适用于大规模的、高维的数据库的聚类算法.基于密度的聚类算法是其中一个比较典型的研究方向,文中以DBSCAN为基础,提出一种基于密度的网格动态聚类算法.新算法将网格的原理运用到基于密度的聚类算法中,并采用了动态的参数法,能自动根据数据的分布情况进行必要的参数更改,有效减少DBSCAN对初始参数的敏感度,从而提高了聚类的效率和效果,降低了算法I/O的开销.算法不仅能挖掘出各种形状的聚类,并能准确的挖掘出数据集中突出的聚类.  相似文献   

12.
聚类已成为数据挖掘的主要方法之一,能够帮助人们在大量的数据中发现隐藏信息。目前最具典型的密度聚类算法是DBSCAN(density-based spatial clustering of applications with noise),它能够在空间数据库中很好地发现任意形状的簇并有效地处理噪声,但是它的计算复杂度相对较大。因此,采用划分数据集和聚簇合并方法,提出了一种基于密度和网格的高效聚类算法DGCA,并通过人工合成数据集和真实数据集对该聚类算法进行理论验证。实验结果表明该算法在效率性能和质量方面比DBSCAN都得到了提高。  相似文献   

13.
增量算法的要求是聚类特征一般是可加的、非迭代的。文中提出了一种基于密度的网格聚类算法GDCLUS,并在此基础上提出了增量式算法IGDCLUS,它可发现任意形状的聚类,具有高效、易实现的特点,适用于数据库周期性地增量环境下的数据批量更新。  相似文献   

14.
基于网格带有参考参数的扩展聚类算法   总被引:1,自引:0,他引:1  
作者在前期研究工作中提出了一种基于网格的带有参考参数的聚类算法(GRPC),该算法从用户的角度去看待聚类,最大程度地避免用户设置聚类参数的盲目性.本文对GRPC算法在高维性和可伸缩性两方面进行了扩展,将高维数据空间的聚类工作分解到二维数据空间来进行,并采用随机抽样技术来处理大规模的数据集.实验仿真表明,该算法能在三维及其以上的数据空间有效地聚类较大规模数据集.  相似文献   

15.
新的基于网格聚类算法(GCAB)利用网格处理技术对数据进行了预处理, 并引进了网格密度阈值处理和网格中心点两种技术. 实验表明, GCAB算法不仅具有DBSCAN算法准确挖掘各种形状的聚类和很好的噪声处理能力的优点, 而且具有较高聚类速度.  相似文献   

16.
全方位的对各类聚类算法进行总结和归纳,并且对一些在特殊领域中应用聚类算法进行深度解析,然后从以下三个部分,算法思想,关键技术以及算法特点等方面进行基本概括,对一些代表性的聚类算法进行比较分析以及聚类算法新领域研究的展望,这对将来聚类发展具有重大意义.  相似文献   

17.
为解决网格聚类算法中对参数过于敏感、无法自动识别不同密度梯度类以及不同梯度类间划分不够精确等问题,提出了相交网格下基于最优划分的多密度梯度网格聚类算法(OPMDG).该算法只需用户输入一个大致的密度阀值范围,网格边长自动计算并可自动调节适应,减少了算法对参数的敏感性;提出了二重划分技术,可挖掘不同密度梯度的类;对于处于不同类上的交界点,引入了电荷间吸引力的概念,能有效解决类间聚类精度不高等问题.实验结果表明该算法是有效的.  相似文献   

18.
基于网格密度和距离信息特征的聚类算法   总被引:1,自引:0,他引:1  
摘要: 提出的基于网格密度和距离信息特征的聚类方法(GDD)通过构建基于距离的跃迁函数将局域密度波动特征与距离分布信息联系在一起,根据计算出的跃迁函数值扩展和增长聚类簇,从而避免了多数基于网格和密度的聚类算法存在的单调性搜索聚类缺陷。结合具体的跃迁函数在不同测试集上的实验结果表明:GDD算法不仅能够发现任意形状的簇和对噪音数据不敏感,且具有线性于网格数目的时间复杂性,能够回避密度分布不均对聚类结果的影响,更适合于对大规模真实数据集的聚类。  相似文献   

19.
一种网格和分形维数的数据流聚类算法   总被引:1,自引:0,他引:1  
针对常规算法不能适应数据流的动态环境问题,提出一种基于网格和分形维数的数据流聚类算法,有效地完成了对数据流的分析任务,克服了传统聚类方法的不足,把整个挖掘过程分为在线进程和离线进程,最终实现数据流的聚类.  相似文献   

20.
介绍了一种简单、有效的三维网格分割算法.该算法是基于最小化最大类内误差的聚类方法.先将表面网格转换成连接图,通过最短路径定义任意两个三角形之间的“距离”,然后利用新的距离度量将传统的聚类算法应用到网格表面分割问题.提出的算法不仅确保使最大类内距离实现最小,而且可以确保每个类别的所有三角形都构成网格表面上单独的一片.提出了一种受限边界直化算法,极大改善了分割后的区域形状.实验表明,这种两步(最小化最大类内距离聚类和受限边界直化)的网格分割算法在区域平面性和区域形状方面都表现出了良好效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号