首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对六足机器人非结构化地形稳定步行问题,研究了基于足力分布的位姿调整策略.通过力学分析建立了机器人任意步态模式下的足力分布模型,获得足底受力的平衡关系;采用重心位置调整策略实现了机器人步行过程中的位姿优化,来提高步行稳定性;并且建立了虚拟悬挂模型,采用足力补偿的方法对外界的扰动进行抑制,进一步提高机器人步行的稳定性.通过仿真验证了该调整策略对提高机器人步行稳定裕度的有效性.  相似文献   

2.
为解决四足机器人在爬坡过渡位置足端打滑和运动连续性差的问题,提出了一种基于俯仰位姿调整的四足机器人静步态爬坡运动策略.首先建立了四足机器人在坡底、坡面和坡顶三个运动阶段的准静态平衡模型;接着定义了打滑率和倾覆率两个无量纲量作为机器人的爬坡性能评价参数;然后通过求解准静态平衡模型得到机身位姿参数与爬坡性能评价参数的映射关系,并根据此映射关系为四足机器人制定了高效的爬坡位姿调整策略.仿真实验结果表明:提出的爬坡运动策略通过调整四足机器人的机身俯仰位姿,改善了机器人在过渡位置打滑和运动连续性差等方面的运动性能,提高了机器人的爬坡稳定性和运动效率.  相似文献   

3.
六足机器人HITCR-I的研制及步行实验   总被引:1,自引:0,他引:1  
针对六足机器人的非结构化地形步行问题,研制了小型六足机器人HITCR-I.设计了基于复合四连杆机构的腿部结构,使其具备全方位的运动能力.为了进一步提高机器人的运动性能,构建了描述六足机器人整体灵活度的表达式,并依据表达式进行了结构优化设计.基于“行为”和“功能”的思想对控制目标进行规划,设计了基于“功能-行为”控制体系构架的运动控制器,结合适应非结构化地形腿部运动轨迹的规划和基于局部规则的自由步态生成,实现了非结构化地形六足机器人有效且稳定的步行.最后通过实验验证了六足机器人系统HITCR-I非结构化地形的步行能力.  相似文献   

4.
大型飞机机身壁板装配位姿调整系统的运动规划   总被引:1,自引:0,他引:1  
为了解决大型飞机机身壁板数字化装配中的调姿与对接问题,设计了一种面向大型飞机机身部装的数字化柔性工装试验样机,提出了一种基于精密三坐标定位器四点支撑的大型飞机机身壁板的装配位姿调整方法.该方法不仅适合于调姿路径不确定的情况,而且还将装配位姿调整过程分解为位置与姿态2个调整阶段,从而降低了多轴协调控制的难度.由于装配件的位移、速度、加速度轨迹的理论计算与物理实验结果均是光滑连续的,而且满足各边界约束条件,因此该调姿系统及其运动规划方法可满足机身壁板装配调姿的精度、效率和稳定性要求,为装配件调姿运动的高效精确控制奠定了基础.  相似文献   

5.
六足机器人HITCR-Ⅰ的研制及步行实验   总被引:1,自引:0,他引:1  
针对六足机器人的非结构化地形步行问题,研制了小型六足机器人HITCR-Ⅰ.设计了基于复合四连杆机构的腿部结构,使其具备全方位的运动能力.为了进一步提高机器人的运动性能,构建了描述六足机器人整体灵活度的表达式,并依据表达式进行了结构优化设计.基于"行为"和"功能"的思想对控制目标进行规划,设计了基于"功能-行为"控制体系构架的运动控制器,结合适应非结构化地形腿部运动轨迹的规划和基于局部规则的自由步态生成,实现了非结构化地形六足机器人有效且稳定的步行.最后通过实验验证了六足机器人系统HITCR-I非结构化地形的步行能力.  相似文献   

6.
7.
为实现四足机器人在复杂的地形环境、有限的能量供应和不可预知的干扰下运动稳定,提高四足机器人穿越复杂地形的能力,采用了粒子群优化算法对经典步行步态参数进行优化,提出了一种易于实现、能适应不同地形的探索性步态. 所提出的探索步态不需要立体视觉或激光雷达所感测到的任何地形信息,机器人通过IMU传感器和足端力传感器接触地面来感知地形. 针对提出的优化方法和步态策略进行了仿真和实验,验证了所提出的探索性步态在穿越不平坦地形时的运动能力.   相似文献   

8.
六自由度并联机器人的随机位姿误差分析   总被引:1,自引:0,他引:1  
本文提出了并联式机器人操作器的随机位姿误差的分析方法。应用影响系数方法,使得含有114个原始误差参数的六自由度并联机器人操作器的位姿误差传递矩阵具有简单而统一的表达形式。文中还采用概率论方法给出了位姿误差的变动范围。  相似文献   

9.
提出一种六自由度3-RRRS并联机器人机构,建立了位姿正逆解的解析表达式,其中位姿正解有4组,位姿逆解有8组。  相似文献   

10.
在未知地形行走时,由于地形突变,采用常见步态算法的四足机器人容易受到冲击,导致失稳,为此,提出一种改进的四足机器人足端轨迹规划的算法。将足端运动轨迹分段优化,减小机器人在水平地面、上坡和下坡地形的足端力矩变化,增加四足机器人运动的稳定性。实验选用斯坦福四足机器人,记录俯仰角pitch、横滚角roll及足端力矩在机器人通过不同地形时的变化。实验结果表明,足端轨迹优化后的机器人在未知地形中行走的稳定性得到有效提升。  相似文献   

11.
为提高大惯量6足机器人行走的稳定性与连续性,提出了基于速度矢量的三角间歇步态.该步态以三角间歇步态为基础,统一映射平动与转动速度矢量为绕旋转中心转动,达到6足机器人全方向行走且速度平滑切换的目的.首先,由旋转中心理论计算中心坐标,在足端工作空间约束下计算最大旋转速度;其次,对摆动相采用足端0冲击摆线轨迹规划,支撑相采用增量式轨迹规划以便于编程计算连续运动指令实现变速度矢量运动;最后,在虚拟样机和物理模型上进行不同步态的对比实验.结果表明采用基于速度矢量的三角间歇步态晃动幅度与方差最小,提出的方法可保证大惯量6足机器人连续稳定的全方位运动.   相似文献   

12.
六足机器人的多关节、高耦合、非线性的机械结构使其运动控制成为机器人研究领域一大难题。针对上述问题,本文在Matsuoka振荡器的基础上创新性提出带力反馈神经元的三神经元相互反馈的CPG模型作为六足机器人的运动控制器。在对六足机器人进行运动学建模、运动学分析等数学分析的基础上对三神经元CPG模型建模分析并得到振荡周期波形满足六足机器人节律运动的要求。对力反馈模型进行实物设计并建立对应反馈模型,根据反馈信息对六足机器人运动节律、关节信息等实时调节。最后通过仿真及实物实验证明该CPG模型能够满足维持六足机器人稳定运动的要求,在复杂未知环境中也能够保持机器人的稳定性与适应性,实现复杂环境下的自适应运动。  相似文献   

13.
Humanoid walking planning is a complicated task because of the high number of degrees of freedom (DOFs) and the variable mechanical structure during walking. In this paper, a planning method for 3-dimensional (3-D) walking movements was developed based on a model of a typical humanoid robot with 12 DOFs on the lower body. The planning process includes trajectory generation for the hip, ankle, and knee joints in the Cartesian space. The balance of the robot was ensured by adjusting the hip motion. The angles for each DOF were obtained from 3-D kinematics calculation. The calculation gave reference trajectories of all the DOFs on the humanoid robot which were used to control the real robot. The simulation results show that the method is effective.  相似文献   

14.
针对传统的巡检机器人运动局限在二维平面,不能从事复杂地形巡检工作的问题,系统采用了舵机控制的六足机器人的结构,并研究了STM32单片机控制六足机器人的方式,舵机控制器的控制调试原理、六足机器人的结构、硬件搭建和软件控制。为了让六足机器人具备避障、循迹、自动识物的功能,采用了超声波测距技术、蓝牙、WiFi无线传输技术、摄像头控制技术,并完成了相关的实验调试。调试结果表明:六足巡检机器人控制范围为40 m以上,超声波测距精度为3 mm,舵机的控制精度为0.24°,可以很好地完成避障、循迹等任务,具有稳定性高、适应性强等优点,在实际应用中取得很好的成效,有着广泛的发展前景。  相似文献   

15.
四足机器人坡面运动时的姿态调整技术   总被引:1,自引:0,他引:1  
提出了一种四足机器人对脚小跑步态下的坡面运动姿态调整策略.采用复合摆线对机器人足端轨迹进行规划,以减小足端在换相点处与地面间的瞬时冲击;以机器人质心在斜面上的落点到支撑线的距离为判据进行四足机器人坡面运动稳定性分析,得到其姿态调整的确定值.在Adams中建立了四足机器人的虚拟样机模型并进行了仿真试验,试验结果证实所提出的姿态调整策略对提高四足机器人坡面运动稳定性有效.   相似文献   

16.
A motion control structure used for autonomous walking on uneven terrain with a hexapod biomimetic robot is proposed based on function-behavior-integration.In the gait planning level, a set of local rules operating between adjacent legs were put forward and the theory of finite state machine was employed to model them; further, a distributed network of local rules was constructed to adaptively adjust the fluctuation of inter-leg phase sequence.While in the leg-end trajectory planning level, combined polynomial curve was adopted to generate foot trajectory, which could realize real-time control of robot posture and accommodation to terrain conditions.In the simulation experiments, adaptive regulation of inter-leg phase sequence, omnidirectional locomotion and ground accommodation were realized, moreover, statically stable free gait was obtained simultaneously, which provided hexapod robot with the capability of walking on slightly irregular terrain reliably and expeditiously.  相似文献   

17.
为解决双臂巡检机器人沿输电线行走过程中存在的行走轮受力不均,易打滑脱线等问题,提出一种移动关节主动调节方法.分别建立了传统的双臂巡检机器人、带柔索双臂巡检机器人和带移动关节双臂巡检机器人行走轮受力模型,对比分析发现:机器人在最佳位姿状态下,受力情况最好,不易发生打滑问题.建立了巡检机器人关节变化的动力学模型并设计主动控制器,对机器人行走越障和沿线行走两种工况进行了仿真模拟.所设计的控制器能够协助机器人完成大坡度巡航与行走越障工作,并能够有效抑制关节振荡问题,缩短响应时间.最后开展了机器人行走越障与不同坡度行走实验,表明所设计的控制器能够辅助机器人完成巡检任务,有效抑制了行走打滑问题.  相似文献   

18.
基于虚拟模型的四足机器人直觉控制   总被引:2,自引:0,他引:2  
JTUWM-Ⅲ四足机器人在关节上设置驱动器,高层的步行任务转化为低层关节空间的驱动控制,它是非直觉的。针对这一问题,以虚拟驱动器模拟实际关节转矩,基于此虚拟驱动器的模型,将高层的步行任务转化为底层的关系转矩控制,凭直觉连续设置虚拟力使机器人不断从平衡状态进入不平衡状态,进而由虚拟模型得到期望转矩,驱动机器人进入新的平衡状态完成步行。  相似文献   

19.
针对复杂环境下机器人目标跟踪问题,提出由粗到精定位策略下基于多特征的智能机器人目标跟踪方法.该方法首先利用射频识别系统实现目标粗定位,然后采用自适应模板匹配算法、改进核函数的连续自适应均值飘移算法及扩展卡尔曼滤波算法提取目标头肩形状、衣服颜色与运动特征,实现精确定位.最后根据人机运动状态设计基于模糊规则的智能调速控制器,实时自动调整机器人的基准线速度与转弯增益,以稳定跟随运动目标.实验结果表明,该方法能有效保持人机之间的安全距离,对遮挡、相近颜色背景干扰及目标突然转弯的跟踪问题有较强的鲁棒性.  相似文献   

20.
根据人体结构设计了小型舵机驱动双足机器人,采用D-H方法建立其位姿数学模型,利用5次多项式插值的方法规划出踝关节和髋关节的位置-时间函数,对髋关节踝关节轨迹进行代数解析得到每个关节的转角-时间函数.提出双足机器人直行步态并行规划策略,即将关节转角-时间函数分别导入ADAMS虚拟样机和实际物理样机,虚拟样机和物理样机同时测试规划的步态数据.通过实验验证,并行规划策略可以并行比较运动仿真直行步态和物理样机直线行走状态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号