首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
 风沙流与沙尘暴是发生在高雷诺数大气边界层中的气固两相流,对风沙流与沙尘暴的深入认识、准确预报和科学防治都要基于对风沙运动规律的认知和把握,因而需要借鉴高雷诺数湍流的研究成果。本文综述了高雷诺数壁湍流和风沙流/沙尘暴研究的现状,着重介绍了在中国民勤地区建立的沙尘暴与高雷诺数壁湍流野外观测站,以及基于观测站的观测列阵所获得的初步成果,展望了进一步的发展方向。  相似文献   

2.
A new regional dust model suitable for simulation and forecasting of dust storms over northern China was described. The dust model was developed by coupling the mesoscale dynamics model MM5 (the Fifth-Generation NCAR/Penn State Mesoscale Model) with a set of mass conservation equations for the particles. The model includes all the atmospheric physical processes of dust storms including occurrence, lifting, transport, and dry and wet deposition. It considers the parameterization of dry and wet deposition, the dust size distribution and microphysical processes in detail. The dust flux from the surface is parameterized based on the friction velocity, which is provided by the mesoscale nonhydrostatic dynamics model, which takes account of the vegetation coverage, land use, soil category, and soil moisture. This new dust model is used to simulate the dust storm that occurred on 19--21 March, 2002 in North China. The results show that there is high dust concentration and its movement is consistent with the surface weather record and satellite monitoring images of the observed dust storm. The simulated dust concentration coincides with the observation data of the particulate concentration of PM10 (dust particles smallerthan 10 μm in diameter). The new numerical model also successfully simulates the formation and migration of the dust storm of 6-8 April, 2002 in North China.  相似文献   

3.
A heavy dust storm originating in Mongolia and Inner Mongolia traveled to Northeast China and met a midlatitude frontal system on May 3, 2017. The potential ice nuclei (IN) effects of mineral dust aerosols on the vertical structure of clouds, precipitation, and latent heat (LH) were studied using Global Precipitation Mission (GPM) satellite observations and Weather Research and Forecasting (WRF) model simulations. The WRF simulations correctly captured the main features of the system, and the surface rain rate distribution was positively correlated with data retrieved from the GPM Microwave Imager. Moreover, the correlation coefficient increased from 0.31 to 0.54 with increasing moving average window size. The WRF-simulated rainfall vertical profiles are generally comparable to the GPM Dual-Frequency Precipitation Radar (DPR) observations, particularly in low layers. The joint probability distribution functions of the rain rate at different altitudes from the WRF simulation and GPM observations show high positive correlation coefficients of ~0.80, indicating that the assumptions regarding the raindrop size distribution in the WRF model and DPR retrieval were consistent. Atmospheric circulation analysis and aerosol optical depth observations from the Himawari-8 satellite indicated that the dust storm entered only a narrow strip of the northwest edge of the frontal precipitation system. The WRF simulations showed that in carefully selected areas of heavy dust, dust can enhance the heterogeneous ice nucleation process and increase the cloud ice, snowfall, high-altitude precipitation rate, and LH rate in the upper layers. This effect is significant at temperatures of ?15 °C to ?38 °C and requires dust number concentrations exceeding 106 m?3. It is important to accurately classify the dusty region in this type of case study. In the selected vertical cross section, the WRF-simulated and DPR-retrieved LH have comparable vertical shapes and amplitudes. Both results reflect the structure of the tilted frontal surface, with positive LH above it and negative LH below it. The simulated area-averaged LH profiles show positive heating in the entire column, which is a convective-dominated region, and this feature is not significantly affected by dust. DPR-based LH profiles show stratiform-dominated or convective-dominated shapes, depending on the DPR retrieval product.  相似文献   

4.
The speciation of the elements on the surface of the particles collected during dust storm and non-dust storm in Beijing and Inner Mongolia was studied by XPS. The major species of iron on the surface were oxides, sulfate, silicate,FeOOH and minor part sorbed on SiO2/Al2O3. Sulfate is the dominant species of sulfur on the surface. SiO2 and Al2O3 are the main components of Si and Al on the surface respectively.One of the most important findings was that the Fe(Ⅱ) (FeS and FeSO4) produced could account for up to 44.3% and 45.6% of the total Fe on the surface in the aerosol sample collected at that night and next day of the “peak” time of the dust storm occurring on March 20, 2002, while Fe2(SO4)3,one of the Fe(Ⅲ) species on the surface decreased from 67.1% to 49.5% and 48.0% respectively. Both S and Fe enriched on the surface of aerosol particles. Fe(Ⅱ) accounted for 1.3%-5.3% of total Fe in bulk aerosol samples during dust storm. These results provided strong evidence to support the hypothesis of the coupling between iron and sulfur in aerosols during the long-range transport, which would have important impact on the global biogeochemical cycle.  相似文献   

5.
The iron hypothesis, first proposed by John Martin in 1990[1], suggests that some surface oceans such as North and Equatorial Pacific Oceans have high nutrient but low chlorophyll (HNLC). Thus iron coming from terrestrial dusts is the primary factor limit…  相似文献   

6.
研究四川盆地中江气田中侏罗统沙溪庙组河道砂体内部结构特征及其对气水分布的影响.在现代沉积、野外露头、岩心、测井、地震资料和生产测试资料的基础上,开展了浅水三角洲分流河道砂体内部结构特征研究,建立了相应的构型模式,分析了不同河道构型模式下的气水分布特征.结果表明:沙溪庙组为曲流河入湖的河控浅水三角洲平原—前缘沉积,发育曲...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号