首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
导电剂对金属氢化物电极性能的影响   总被引:1,自引:0,他引:1  
研究了不同种类导电剂(镍粉、石墨)及导电剂含量对金属氢化物电极性能的影响,并用交流阻抗法分析了其影响机理。结果表明,以石墨为导电剂的MH电极活化较快,小电流放电容量较高;以镍粉为导电剂的MH电极大电流放电容量较高;两者混合作为导电剂的MH电极综合性能较好。  相似文献   

2.
金属氢化物-镍蓄电池低温性能的研究   总被引:1,自引:0,他引:1  
试验采用不同贮氢合金粉、电解液以及采用不同负极加工工艺等方法制作成密封MH—Ni电池,并通过对其在-25℃和-40℃温度下放电容量进行检测,研究了影响MH—Ni电池低温放电的因素,分析并讨论了提高MH—Ni电池低温性能的途径和方法.  相似文献   

3.
升温型金属氢化物热泵性能分析   总被引:3,自引:2,他引:3  
考虑到金属氢化物床的传热和换热器间显热回收等实际因素,提出了升温型金属氢化物热泵性能系数计算公式,为合理选择金属氢化物对,以及调整热泵的各种工艺参数提供了理论依据.结果表明:强化金属氢化物床的传热、采用平台倾斜度小的金属氢化物、减小反应器材料的比热和质量,以及换热器间高效率的显热回收,是提高热泵性能系数的有效措施.金属氢化物热泵的性能系数随驱动热源温度的升高而增大,但温升幅度随驱动热源温度的升高而减小。  相似文献   

4.
新型高能化学电源电极过程及其研究方法的进展   总被引:2,自引:0,他引:2  
简要介绍国际上新型高能化学电源的一些研究现状,并主要结合课题组的研究工作,就锂离子电池纳米相电极材料,金属氢化物电极表面电化学性能及其相关电极过程和化学电源研究中谱学电化学方法的应用等进行了总结和回顾。  相似文献   

5.
为设计和筛选高性能贮氢合金,对影响氢化物电极放电过程的因素进行理论研究,根据氢化物电极的结构及放电过程,推导出多孔氢化物电极的极化方程.实验结果表明,在制备氢化物电极时,应注意选择贮氢合金颗粒尺寸和填充密度来增大单位体积反应层中的反应表面积和缩短氢扩散距离,以降低氢浓差极化程度;注意添加催化剂,降低电化学极化程度;并添加导电剂,以降低电极的电阻极化程度  相似文献   

6.
影响氢化物电极放电过程的因素   总被引:1,自引:0,他引:1  
为设计和筛选高性能贮氢合金,对影响氢化物电极放电过程的因素进行理论研究,根据氢化物电极的结构及放电过程,推导出多孔氢化物电极的极化方程。实验结果表明,在制备氢化物电极时,应注意选择贮氢合金颗粒尺寸和填充密度来增大单位体积反应层中的反应表面积和缩短氢扩散距离,以降低氢浓差极化程度;注意添加催化剂,降低电化学极化程度,并添加导电剂,以降低电极的电阻极化程度。  相似文献   

7.
对Li/SOCl2实体电池不同荷电状态下电池电化学阻抗谱测试,结果表明,电池阻抗谱变化有很好的规律,主要体现在阻抗谱中两个圆弧的先较小后增大。这就有可能根据电池EIS谱局部变化特征来预测电池的荷电状态。在电池荷电状态N40%时,其有效预测参数为阻抗谱高频端圆弧最高点对应的ImZ^*,log(Z^*)及相角θ^*。  相似文献   

8.
金属氢化物吸附和脱附过程的数值分析   总被引:2,自引:0,他引:2  
结合化学吸附的机理,提出圆柱筒型金属氢化物吸氢、放氢的物理和数学模型。以金属氢化物LaNi4.7Al0.3为例进行数值模拟,计算了不同时间的金属氢化物的反应锋面位置、热流量和吸氢量等参数。还研究了不同边界条件下,金属氢化物吸氢、放氢的传质情况及金属氢化物导热系数对金属氢化物的吸附、脱附的影响,并对不同类型金属氢化物在相同条件下的吸附性质进行了对比。研究证明:利用金属氢化物贮氢,应尽量减薄反应层的厚  相似文献   

9.
采用SEM,XRD,TEM以及EIS等检测方法,研究不同过充循环前后MH/Ni电池性能与正负极材料形貌及表面元素的变化.实验结果表明,经正常充放电循环70周后,正极活性物质表面保持良好的球形形貌,而经持续过充电循环相同次数后,因晶格的不可逆膨胀而呈不同程度破裂,储氢合金颗粒并无明显粉化现象,但其表面却覆盖许多绒状或针状物,经能谱检测,该绒状物主要成分为稀土金属的氢氧化物或氧化物.EIS阻抗谱分析表明,电池的欧姆电阻(Rs)、反应电阻(Rt)和Warburg阻抗(Zw)均有不同程度的增加,而界面电容(Ci)则呈逐渐降低趋势,这些均是最终导致电池电化学性能衰减的原因.  相似文献   

10.
在质子交换膜燃料电池(PEMFC)中,采用电化学阻抗谱(EIS)研究了膜电极(MEA)的一些运行条件对其工作性能的影响,并探讨了其作用机理.通过测量数据的解析和等效电路的数学模拟,得到了与MEA结构关联的电极诸参数随电池温度和反应气体压力的变化规律.研究表明,MEA的氧电极的电化学反应电阻随电池温度的升高显著减小,氧电极的双电层电容随电池温度的升高有所增加,表明电极有效面积得以增加,有利于MEA工作性能的提高.  相似文献   

11.
由于没有镉污染,对环境友好,用于高功率设备的镍氢电池的需求量增长很快,目前每年的需求量约为5亿只.但是镍氢电池的一些性能还不能完全满足电动工具的使用要求,突出表现在电池大电流充放循环寿命较差.因此,研制高性能的高倍率镍氢电池不仅具有重要的研究意义,也有很大的应用价值.本文研究影响SC型动力电池循环寿命衰减的主要因素,测量了在大电流循环过程中镍氢电池的内阻、温度及重量变化,并运用SEM、XRD对电池内阻升高的原因进行了分析.我们认为电池内阻升高是镍氢电池大电流循环寿命差的主要原因,分析发现在镍氢电池进行大电流充放电循环时,电池正极膨胀,负极微粉化,电池内部孔隙率增加,致使电解液干涸,电池内阻升高.通过增加负极容量,抑制正极膨胀,可以有效改进镍氢电池大电流充放时的循环性能.  相似文献   

12.
镍正极掺杂NiOOH的MH/Ni电池性能   总被引:1,自引:0,他引:1  
将化学氧化法合成的NiOOH以一定的比例掺杂到商用球形Ni(OH)2粉末当中,以此作为镍正极活性材料,制成额定容量为1 5Ah圆柱密封AA型MH/Ni碱性蓄电池·采用恒流充放电和交流内阻分析方法测试了该电池的性能·结果表明:镍正极掺杂NiOOH的MH/Ni电池在活化效率和循环寿命方面得到了明显的改善和提高,掺杂NiOOH的镍正极具有更高的反应活性及更小的电化学反应阻抗,因而表现出良好的电化学性能·实验表明,镍正极活性材料中NiOOH的掺杂量为1%~3%时对电池性能有较好的影响,掺杂量过多会降低电池的放电容量·  相似文献   

13.
测试不同循环状态下PuNi3和Ce2Ni7型贮氢合金电极在放电深度为50%条件下的电化学交流阻抗谱,分析电极反应的等效电路图.结果表明,随循环次数的增加,PuNi3型合金和Ce2Ni7型合金电极的表面电荷反应阻抗(R4)和接触阻抗(R2,R3)均随循环次数的增加呈先减小后增大的趋势,且PuNi3型合金电极表面电荷反应阻抗(R4)较Ce2Ni7型合金电极先达到最小值.在后期循环过程中,PuNi3型合金电极的表面电荷反应阻抗(R4)及颗粒之间的接触阻抗(R2,R3)均明显大于Ce2Ni7型合金电极,这说明PuNi3型合金电极在循环过程中的腐蚀与粉化均比Ce2Ni7型合金电极严重.  相似文献   

14.
金属氢化物床有效导热系数的理论计算   总被引:1,自引:0,他引:1  
金属氢化物床的有效导热系数是研究强化金属氢化物传热、优化设计金属氢化物反应器的重要参数。目前,人们只对其进行了实验研究。为此,本文提出了金属氢化物床有效导热系数的理论计算模型,并且讨论了氢化物床的各种参数对导热系数的影响。利用本模型计算TiMn_(1·5)—H系的有效导热系数,计算结果与实验结果有较好的吻合。  相似文献   

15.
研究了一种镍氢电池负极-金属氢化物电极新型粘合剂SBS,测定了以SBS为粘合剂的电极性能,并与PTFE和HPMC两种粘合剂进行了对比。研究结果表明:采用SBS作粘合剂的电极的耐碱性和柔性优于其它粘合剂,其放电容量、放电电位、大电流放电能力、内阻、电催化活性等性能也较好,尤其是循环性能优良,有望成为一种比较理想的金属氢化物电极粘合剂;SBS的最佳加入量为1%左右。  相似文献   

16.
为了研究金属氢化物反应器内吸氢过程的热质传递特性,建立了圆柱形反应器的二维多物理场模型.新建立的模型考虑了换热流体流速与温度变化对反应器吸氢过程的影响,采用COM-SOL Multiphysics V3.5a软件来求解,并探讨了一些重要参数变化对反应器性能的影响.结果表明:接近换热管壁处的氢化物床的温度较低,吸氢反应更快,换热流体入口附近床层的吸氢反应比出口附近的快;减小氢化物床层与换热管壁面之间的接触热阻和增加氢化物床层有效导热系数都可以增强换热效果,从而加快吸氢反应,当接触热阻从0.002 m2·K/W减小到0.0005m2 ·K/W时,吸氢反应时间大约缩短了15.5%;采用强化换热措施可以减少吸氢反应时间,提高反应器平均功率.  相似文献   

17.
为了提高MH/Ni电池储氢合金电极的导电性,运用真空蒸镀法在电极表面镀覆了一层金属Cu膜,利用XRD、XPS、SEM等方法对极片进行了分析,结果表明,在极片表面镀覆一层金属Cu膜不会对储氢合金的体相结构产生影响.电化学性能测试表明:极片经过修饰的电池,内阻降低了32.8%,5 C放电容量增加了190 mA·h, 放电平台电压提高了0.10 V,同时,充电时的内压也有明显降低,充电效率有较大提高.  相似文献   

18.
Perovskite LaFeO3 is considered as a promising new anode material for nickel/metal hydride batteries due to its low cost, environmental friendliness and high temperature resistance. However, the poor conductivity of LaFeO3 material restricts the discharge ability, which is problematic for its future widespread application. To solve the above issue, in this study, we prepared C/Ni-coated LaFeO3 composite in view of the excellent electrical conductivity of carbon and nickel metal. Results show that the C/Ni-coated LaFeO3 composite delivers remarkably increased discharge capacity of ~345 mAh g?1 at 60 ?°C in contrast to ~267 mAh g?1 for pure LaFeO3. Furthermore, the carbon and nickel not only increase the electrical conductivity of the LaFeO3 but also reduces the agglomeration of the LaFeO3, therefore, the C/Ni-coated LaFeO3 composite serves superior long cycle-life, which maintains 60.9% after 100 cycles (52.9% for the LaFeO3 sample). In overall, the electrochemical behavior of the C/Ni-coated LaFeO3 composite confirms its high potential as nickel/metal hydride batteries for energy storage applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号